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Motivation

The Elliott Classification Programme classifies simple, nuclear
C∗-algebras with some extra properties up to isomorphism.
This is almost finished.
Purely infinite C∗-algebras are easier.
Even non-simple purely infinite C∗-algebras are tractable:

Theorem (Kirchberg)

Let X be a topological space. Let A,B be strongly purely infinite,
stable, nuclear C∗-algebras with primitive ideal spaces
homeomorphic to X . Then A and B are isomorphic over X ⇐⇒
A and B are equivalent in KK(X ).
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How about classifying group actions on Kirchberg algebras?

results for groups like Z, Z2, poly-cyclic groups or actions with
special properties
I suggest a two-step process:
algebraic topology classify objects in the bootstrap class in

KKG up to KKG -equivalence
analysis improve KKG -equivalence to conjugacy

under suitable assumptions
My talk will only be about the algebraic topology aspects.
The analysis aspect is not done.
There are some encouraging results by Gábor Szabó.
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Two opposite cases

Direct proofs of classification theorems need groups without
torsion or actions with the “Rokhlin property”.
The Rokhlin property limits the K-theory of A and Ao G .
We will study two opposite cases:

1 torsion-free, amenable groups:
{actions in the equivariant bootstrap class}/KKG -equivalence
correspond to principal bundles over BG

2 groups of prime order, Z/p for a prime p:
{actions in the equivariant bootstrap class}/KKG -equivalence
correspond to exact modules over a certain Z/2-graded ring

The modules in case 2 are complicated.
As a test case, we completely describe
actions on Cuntz algebras.
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The equivariant bootstrap class

Definition (equivariant bootstrap class BG )

localising subcategory of KKG generated by IndG
H(Mn(C))

for H ⊆ G compact and H y Mn(C),
coming from a projective representation H y Cn

Theorem (Dell’Ambrogio–Emerson–Meyer 2014)

An object of KKG belongs to BG if and only if
it is KKG -equivalent to an action on a Type I C∗-algebra.

Remark

BT is generated by C.
It contains T-actions not KKT-equivalent to an action on a
commutative C∗-algebra.
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Making objects simple

Theorem

Any object A of KKG is KKG -equivalent to a pointwise outer action
on a non-zero, simple, purely infinite, stable C∗-algebra B .
If A is nuclear or exact, then so is B .

Proof.
If E is a G -equivariant A,A-correspondence, then A is
KKG -equivalent to the Toeplitz algebra TE . (Pimsner)
If E is “infinite”, then TE is simple and purely infinite.
(Kumjian)
This works if E = L2(G ,H)⊗ A with a “regular” covariant
representation of A,G on L2(G ,H).
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The Dirac–dual Dirac method for amenable groups

Theorem (Higson–Kasparov)

Let G be an amenable group. There is a nuclear C∗-algebra P with
a proper G -action that is KKG -equivalent to C.

This is used by Higson–Kasparov to prove
the Baum–Connes conjecture for amenable groups.
Let EG be a locally compact, universal proper action of G .

Corollary
Let G be amenable. The following functor is fully faithful:

p∗EG : KKG → KKGnEG , A 7→ C0(EG ,A).

one-sided inverse: KKGnEG → KKG , A 7→ P ⊗EG A
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Transferring G -actions to bundles

Proposition
Let G be torsion-free. Let BG be its classifying space.
Then KKGnEG ∼= KKBG .

Theorem (Meyer 2019)

Let G be torsion-free and amenable.
Then KKG is equivalent to the subcategory of KKBG consisting of
all locally trivial bundles of C∗-algebras over BG .
This equivalence preserves nuclearity.
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Bundles of Kirchberg algebras

Let G be a torsion-free, amenable group.
Any G -action in the equivariant bootstrap class BG is
KKG -equivalent to one on a stable UCT Kirchberg algebra.
The equivalence from KKG to a subcategory of KKBG maps
an action on a stable UCT Kirchberg algebra A
to a locally trivial bundle with fibre A.
Kirchberg’s classification theorem applies here:
KKBG -equivalence ∼= isomorphism of bundles.

Theorem (Meyer 2019)

Let G be a torsion-free amenable group,
A a stable UCT Kirchberg algebra. There is a bijection
{G -actions on A in BG}/KKG -equivalence ∼=
{Aut(A)-principal bundles over BG}/isomorphism
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Some examples

Example (G = Z)
The group Z is torsion-free and amenable.
BZ = T.
{Aut(A)-principal bundles over R/Z}/isomorphism ∼=
π0(Aut(A)).

Example (G = Z2)

The group Z2 is torsion-free and amenable.
BZ2 = T2.
{Aut(A)-principal bundles over T2}/isomorphism ∼=
homotopy classes of triples (x , y , h), x , y ∈ Aut(A),
h is a homotopy in Aut(A) between x · y and y · x .
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The little invariant

Let p be a prime and let G = Z/p.
G -equivariant bootstrap class BG is generated by C, C(G ).

Definition (little invariant for A ∈ KKG )

L∗(A) := KKG
∗ (C,A)⊕ KKG

∗ (C(G ),A) ∼= K∗(Ao G )⊕ K∗(A)m

Proposition

If A ∈ BG , then A ∼= 0 in KKG ⇐⇒ L∗(A) ∼= 0.

L∗(A) is a module over T := KKG
∗ (C⊕ C(G ),C⊕ C(G ))op.
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The ring that acts on the little invariant

The group ring of Z/p is isomorphic to Z[t]/(tp − 1).
Let N(t) := 1 + t + t2 + · · ·+ tp−1.
So tp − 1 = N(t) · (t − 1).

Proposition
The ring T is concentrated in even parity.
It is isomorphic to the ring of 2× 2-matrices(

x00 N(t) · x01
x10 x11

)
, x00, x11 ∈

Z[t]

(tp − 1)
, x01, x10 ∈

Z[t]

(t − 1)
,

with the multiplication induced by the multiplication in M2(Z[t]).
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Köhler’s invariant

Let D be the mapping cone of the inclusion C ↪→ C(G ).
F∗(A) := KKG

∗ (C,A)⊕ KKG
∗ (C(G ),A)⊕ KKG

∗ (D,A).
Let K be the opposite KKG

∗ -endomorphism ring of
C⊕ C(G )⊕ D.
So F∗(A) is always a Z/2-graded module over K.

Theorem (Köhler’s Universal Coefficient Theorem)

If A ∈ BG , C ∈ KKG , there is an extension
Ext1K

(
F1+∗(A),F∗(C )

)
� KKG

∗ (A,C ) � HomK

(
F∗(A),F∗(C )

)
.

Let A1,A2 ∈ BG .
F∗(A1) ∼= F∗(A2) as graded K-modules =⇒ A1 ∼=KKG A2
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The range of Köhler’s invariant

If A ∈ KKG , then the Puppe sequence for the inclusion
C ↪→ C(G ) is an exact sequence for the pieces of F∗(A).
Baaj–Skandalis duality gives an automorphism of KKG .
It maps C 7→ C(G ), C(G ) 7→ C, and D 7→ ΣD.
So it induces an automorphism of the ungraded ring K.
Baaj–Skandalis duality gives another exact sequence for
Köhler’s invariant of A ∈ KKG .

Theorem

A K-module is of the form F∗(A) for A ∈ BG (or A ∈ KKG ) ⇐⇒
it is countable and the two sequences above are exact.
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The classification problem

Köhler’s results imply that
{objects of BG}/KKG -equivalence ∼=
{exact K-modules}/isomorphism
Any action on an object of BG is KKG -equivalent to a
pointwise outer action on a UCT stable Kirchberg algebra.
Köhler already computed the graded ring K explicitly.
I describe it through generators and relations.
This simplifies describing exact modules over it.
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Generators and relations for Köhler’s ring

Theorem
The ring K is the universal ring generated by elements 1j for
j = 0, 1, 2 and αjk for 0 ≤ j , k ≤ 2 with j 6= k with the relations:

1j · 1k = δj ,k1j orthogonal idempotents,
10 + 11 + 12 = 1.
1j · αjk · 1k = αjk ,

αjk · αkm = 0 if {j , k ,m} = {0, 1, 2},
α01 · α10 = N(10 − α02 · α20),

α10 · α01 = N(11 − α12 · α21),

p · 12 = N(12 − α20 · α02) + N(12 − α21 · α12).

α12 and α21 are odd and all other generators are even.

Ralf Meyer Classification of group actions on C*-algebras



Introduction
Groups without torsion

Köhler’s UCT for groups of prime order
Modules over Köhler’s ring

Uniquely p-divisible modules
Some more examples

Uniquely p-divisible modules

Definition
Let ϑ be a primitive pth root of unity. Z[ϑ] ∼= Z[t]/(N(t)).

Let X be a Z/2-graded Abelian group and let Y and Z be two
Z/2-graded Z[ϑ]-modules. Assume that X ,Y ,Z are uniquely
p-divisble. We define an exact K-module:

M0 := X ⊕ Y M1 := X ⊕ Z M2 := Y ⊕ ΣZ

αM
01 =

(
1X 0
0 0

)
αM

12 =

(
0 0
0 (1− ϑ)Z

)
αM

20 =

(
0 1Y

0 0

)
αM

10 =

(
pX 0
0 0

)
αM

21 =

(
0 0
0 1Z

)
αM

02 =

(
0 0

(1− ϑ)Y 0

)
Here ΣZ means Z with opposite parity.
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Structure of uniquely p-divisible exact modules

Theorem
Let M be an exact K-module where M0, M1 or M2 is uniquely
p-divisible.
Then the other two pieces are uniquely p-divisible.
There are modules X over Z[1/p] and Y ,Z over Z[ϑ, 1/p] such
that M is isomorphic to the exact K-module built above.

A G -action on On gives an exact K-module with
M1 ∼= K∗(On) ∼= Z/(n + 1).
Z/(n + 1) uniquely p-divisible ⇐⇒ (p, n + 1) = 1
We assume (p, n + 1) = 1.
The pieces X ,Z above are determined by the induced
G -action on K∗(On).
Given this, the actions in BG up to KKG -equivalence are in
bijection with Z[ϑ, 1/p]-modules.
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The general case

Exact modules over K with cyclic M1 reduce to M1 = Z or
M1 = Z/pk .
I find a list of 10 (series of) examples of such modules, such
that any other exact K-module with cyclic M1 is an extension
of one of these examples by a uniquely p-divisible one.

Example (the trivial action on O∞)

M0 := S = Z[t]/(tp − 1),
M1 := Z,
M2 := S/(N(t)) ∼= Z[ϑ],
all in even degree. Let αM

21 := 0 and αM
12 := 0. Let αM

01 : M1 → M0
be multiplication with N(t). Let αM

10 be evaluation at 1.
Let αM

20 be the quotient map.
Let αM

02 be induced by multiplication with (1− t).
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Summary

If G is an amenable group without torsion:
{group actions on a stable UCT Kirchberg
algebra A}/KKG -equivalence ∼=
{Aut(A)-principal bundles over BG}/isomorphism
If the order of G is prime, then there is a Universal Coefficient
Theorem for G -actions in the bootstrap class.
We can classify G -actions in the bootstrap class up to
KKG -equivalence.
Many actions are uniquely p-divisible.
Up to that, there is a finite, but complicated list of series of
examples.
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