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Abstract. These notes contain an introduction to the theory of quantum

groups in the setting of operator algebras.

We start with some background on finite dimensional Hopf algebras, and
introduce key concepts in the theory of locally compact quantum groups, such

as the Kac-Takesaki operator, in this basic setting. Then we present the def-
inition of a locally compact quantum group in the sense of Kustermans-Vaes,

and list some fundamental results regarding the structure of locally compact

quantum groups, without proof.
In the second part of the notes we focus our attention on the special case of

compact quantum groups. Following the pioneering work of Woronowicz, we

give a self-contained account to this class of quantum groups. In particular,
we discuss the representation theory of compact quantum groups, leading up

to the Peter-Weyl theorem.

The last part of the notes is devoted to connections between quantum
groups and noncommutative geometry. We have picked one specific example

to illustrate these links, namely the spectral geometry of the standard Podleś

sphere. We describe the spectral triple introduced to Da̧browski-Sitarz, de-
forming the Riemann sphere and its standard Dirac operator, and discuss

some of its applications.

1. Introduction

Quantum groups are a mathematical structure at the interface of mathematical
physics, representation theory, operator algebras, and noncommutative geometry.
Historically, they arose from the inverse scattering method, and from efforts to
generalise Pontrjagin duality beyond the case of abelian locally compact groups.
Some landmark contributions are the ICM paper by Drinfeld [9], the work on SUq(2)
by Woronowicz [32], and the theory of locally compact quantum groups due to
Kustermans-Vaes [13]. By now, there is a vast literature on the subject, including
several excellent textbooks [17], [4], [19], [11], [23], with focus on different aspects
of the theory.

These notes aim to give a basic introduction to quantum groups, with emphasis
on the operator algebraic approach to the theory, and connections with noncommu-
tative geometry. In the first part we discuss the duality of finite dimensional Hopf
∗-algebras and the closely related notion of a finite quantum group. At the outset,
the advantage of working in this restricted setting is that some notorious technical
difficulties disappear, and the key ideas are easy to motivate. After this warmup,
we move directly to the definition of a locally compact quantum group, using the
notion of a Hopf C∗-algebra as a key ingredient. However, we do not develop any of
the theory of general locally compact quantum groups beyond the definition. If one
wanted to pursue this direction, it would in fact be more natural to work in the von
Neumann algebraic setting [14]. For our purposes however, the C∗-algebraic setting
is a convenient choice since we shall focus mainly on compact quantum groups in
the remaining part of the notes. The definition of a compact quantum group, due
to Woronowicz, is both elegant and concise, and leads to a rich and interesting
theory. This is the subject of the second part of the notes. We cover the theory of
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compact quantum groups in detail, following the standard sources [23], [33], [18],
[11]. Our presentation is slightly different, which allows one to move to the main
results very directly. In the third part we discuss connections between quantum
groups and noncommutative geometry. This interplay has a long history, and it
is still an active area of research. One of the fundamental challenges is that the
notion of a spectral triple [6], [7] does not interact particularly well with the type
of deformations which are ubiquitous in quantum group theory. These difficulties
have been overcome in a few cases however, and we will consider a particularly nice
example to illustrate this, namely the Podleś sphere [8].

We have also included a few remarks on the general concept of quantum symme-
try. The idea is that the correct notion of symmetry in noncommutative geometry
should incorporate effects which go beyond ordinary automorphisms. Remarkably,
this idea has led to interesting connections with other areas, including the study of
subfactors, free probability, and quantum information.

Throughout the text we assume familiarity with basic concepts and results from
the theory of C∗-algebras, but we do not expect any prior knowledge about Hopf
algebras or quantum groups. For the last section, the reader should be accustomed
with ideas from noncommutative geometry, most importantly the notion of a spec-
tral triple. We have however aimed to give precise references to more advanced
material which is used without proof.

These notes are organised as follows. In Section 2 we discuss the theory of finite
dimensional Hopf ∗-algebras and finite quantum groups, thus laying some ground-
work motivating the definition of a locally compact quantum group. As already
pointed out above, working in the finite setting has the advantage that the basic
ideas become particularly transparent. Section 3 contains a quick introduction to
the general theory of locally compact quantum groups, starting from the concept
of a Hopf ∗-algebra. We sketch some of the main structure results about these
objects, which can be viewed as direct analogues of basic facts on finite quan-
tum groups, albeit requiring much more sophisticated proofs. For the details we
refer directly to the original work of Kustermans-Vaes. Then, in Section 4, we
focus our attention on the case of compact quantum groups. Many of the difficul-
ties in the general locally compact setting simplify quite significantly in this case,
and we develop the theory of these quantum groups from scratch. We also intro-
duce a number of prominent examples of compact quantum groups, including the
quantum group SUq(2) of Woronowicz, free unitary quantum groups, free orthog-
onal quantum groups, and quantum permutation groups. In Section 5 we present
some general definitions and facts from the representation theory of locally compact
quantum groups. Building on this, we discuss the representation theory of compact
quantum groups in Section 6. Section 7 explains now to define actions of quantum
groups on C∗-algebras. In the same way as for classical groups, the study of such
actions is key to the understanding of locally compact quantum groups, and many
examples are directly motivated by an attempt to find generalised symmetries of
certain C∗-algebras. Finally, Section 8 is devoted to the noncommutative geometry
of SUq(2) and the standard Podleś sphere SUq(2)/T . We present the spectral triple
of Da̧browski-Sitarz and discuss some of its properties, and sketch an application
to the Baum-Connes conjecture.

Let us conclude with some remarks on notation. We write B(E) for the algebra of
bounded operators on a Hilbert space, or more generally, the adjointable operators
on a Hilbert A-module E for some C∗-algebra A. The algebra of compact operators
on E is denoted by K(E). We write [X] for the closed linear span of a subset X of
a Banach space. Depending on the context, the symbol ⊗ denotes either the tensor
product of Hilbert spaces or the minimal tensor product of C∗-algebras. We will
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sometimes write ⊙ for algebraic tensor products, mainly when it seems helpful to
distinguish them from completed tensor products. The ground field in the algebraic
part is always chosen to be C, although many definitions and results work more
generally.

These notes grew out of a series of lectures which I gave at the Summer School
on ”Noncommutative Geometry and Operator Algebras” at the Hausdorff Institute
of Mathematics in Bonn in May 2023. I am grateful to the organisers F. Arici,
J. Arnlind, S. Raum, and K. van den Dungen for their excellent preparations and
support. I would also like to thank the participants for asking great questions during
the lectures, and for many stimulating discussions throughout the workshop.
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2. Finite quantum groups

Following the general philosophy of noncommutative geometry [5], a “noncom-
mutative space”, or “quantum space”, is encoded by its noncommutative algebra
of “functions”. In particular, in the spirit of Gelfand duality, a noncommutative
locally compact space is the same thing as a C∗-algebra.

Now a classical locally compact group is a locally compact space equipped with
additional structure, reflected in the group multiplication, the unit element, and
the fact that every group element has an inverse. Moreover, the group operations
are required to be compatible with the topology. We should therefore expect a
“locally compact quantum group” to be given by a C∗-algebra, encoding the under-
lying noncommutative space, together with extra data which reflects the “group”
structure. Indeed, this is essentially how the theory of locally compact quantum
groups works; however the extra structure in the quantum case is more intricate
than in the classical situation. A key feature is that if the underlying noncommuta-
tive space is classical, that is, the function algebra of a locally compact space, then
everything reduces precisely to the familiar concepts from group theory.

Before entering the discussion of general locally compact quantum groups, we
develop the theory of finite quantum groups in this section, making the above ideas
precise in the special case of finite groups. This captures already many of the
structures which appear in the general case.

In order to get started let G be a finite group. Then the group structure of G
can be encoded at the level of the algebra C(G) of complex-valued functions on G.
More precisely, we have

• the comultiplication ∆ : C(G) → C(G)⊗ C(G) = C(G×G) given by

∆(f)(s, t) = f(st),

• the antipode S : C(G) → C(G) given by

S(f)(t) = f(t−1),

• the counit ϵ : C(G) → C given by

ϵ(f) = f(e),

where e ∈ G is the identity element.

These maps satisfy a number of conditions, which can be summarised by saying
that they turn C(G) into a Hopf algebra.

Definition 2.1. A Hopf algebra is a unital algebra H together with

a) a unital algebra homomorphism ∆ : H → H ⊗H, called comultiplication,
b) a unital algebra homomorphism ϵ : H → C, called counit,
c) a linear map S : H → H, called antipode,

such that

a) (Coassociativity) (∆⊗ id)∆ = (id⊗∆)∆,
b) (Counitality) (ϵ⊗ id)∆ = id = (id⊗ϵ)∆,
c) (Antipode axiom) We have

µ(S ⊗ id)∆(f) = ϵ(f)1 = µ(id⊗S)∆(f)

for all f ∈ H, where µ : H ⊗H → H is the multiplication map.

Here we always work over the complex numbers, but the definitions make sense
over any field, or even any commutative ring. The theory of Hopf algebras has a
long history, and it originated from considerations in algebraic topology. Standard
references in the purely algebraic literature include [1], [21].
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The antipode in a Hopf algebra is typically not an algebra homomorphism, and
it is rather a unital algebra antihomomorphism. That is, we always have S(fg) =
S(g)S(f) for f, g ∈ H and S(1) = 1. If σ : H⊗H → H⊗H,σ(f⊗g) = g⊗f denotes
the flip map, then the antimultiplicativity of S can be phrased as µ ◦ (S ⊗ S) ◦ σ =
S ◦ µ. Similarly, the comultiplication ∆ satisfies

σ ◦∆ ◦ S = (S ⊗ S) ◦∆
and ϵ ◦ S = ϵ. This can be interpreted as saying that S is a coalgebra antihomo-
morphism. For proofs of these facts see for instance [11, Section 1.2.4].

We will be interested in Hopf algebras which carry a compatible ∗-structure in
the following sense.

Definition 2.2. A Hopf ∗-algebra is a Hopf algebra H whose underlying algebra is
∗-algebra such that the coproduct ∆ : H → H ⊗H is a ∗-homomorphism.

In a Hopf ∗-algebraH the counit ϵ is always a ∗-homomorphism, and the antipode
satisfies the relation

S(S(f)∗)∗ = f

for all f ∈ H, compare [11, Section 1.2.7]. This means in particular that the
antipode S in a Hopf ∗-algebra is invertible, with inverse S−1 given by S−1(f) =
S(f∗)∗. We note that the antipode in a general Hopf algebra need not be invertible,
although this property holds in most examples of interest.

Exercise 1. Let H be a Hopf ∗-algebra. Show that Hcop, which is H with the same
algebra structure, unit element and counit, but the flipped comultiplication

∆cop = σ ◦∆,
is a Hopf ∗-algebra with antipode S−1.

Let us consider some basic examples of Hopf ∗-algebras.

Example 2.3. Let G be a finite group.
a) The algebra C(G) of functions on G with the maps described further above is a
Hopf ∗-algebra.
b) The group algebra C[G] = C∗(G) of G is a Hopf ∗-algebra with the structure
maps determined by

∆̂(ut) = ut ⊗ ut, ϵ̂(ut) = 1, Ŝ(ut) = ut−1

on the basis elements ut ∈ C∗(G) associated with t ∈ G.

In the sequel we will use the Sweedler notation

∆(f) = f(1) ⊗ f(2)

for the coproduct of an element f in a Hopf algebra. For instance, the antipode
axiom then reads

f(1)S(f(2)) = ϵ(f) = S(f(1))f(2).

We may also write iterated coproducts in this way, that is,

(∆⊗ id)∆(f) = f(1) ⊗ f(2) ⊗ f(3) = (id⊗∆)∆(f),

noting that the comultiplications can be applied in any order due to the coassocia-
tivity axiom.

Let H be a finite dimensional Hopf ∗-algebra. Then the linear dual space Ĥ =
Hom(H,C) becomes again a finite dimensional Hopf ∗-algebra by dualising the
structure maps of H. More precisely, if (x, f) = x(f) is the canonical pairing of

x ∈ Ĥ and f ∈ H then the product and coproduct of Ĥ are defined such that

(xy, f) = (x, f(1))(y, f(2)), (x, fg) = (x(2), f)(x(1), g),
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moreover the antipode Ŝ, counit ϵ̂ : Ĥ → C and unit element 1 ∈ Ĥ are determined
by

(Ŝ(x), f) = (x, S−1(f)), (Ŝ−1(x), f) = (x, S(f))

and

ϵ̂(x) = (x, 1), ϵ(f) = (1, f)

for x, y ∈ Ĥ and f, g ∈ H. Here we use the Sweedler notation ∆̂(x) = x(1) ⊗ x(2)

for x ∈ Ĥ. Moreover we obtain a ∗-structure on Ĥ by setting

(x∗, f) = (x, S(f)∗)

for x ∈ Ĥ, f ∈ H.
Let us point out straight away that our choice of the coproduct on the dual differs

from the usual conventions in the literature on Hopf algebras. More precisely, we
swap the order of the tensor factors in the coproduct, whereas it is standard to

work with ∆̂cop = σ ◦ ∆̂, in our notation. However, our choice is more natural from
the point of view of locally compact quantum groups. In fact, even in the case of
classical groups it turns out to match better with Fourier duality.

Exercise 2. Let H be a finite dimensional Hopf ∗-algebra. Show that Ĥ with the
above structure maps becomes a Hopf ∗-algebra.

A key feature of the passage from H to the dual Ĥ is that it remembers the
original Hopf ∗-algebra. This is a consequence of the following fundamental fact.

Theorem 2.4 (Biduality). Let H be a finite dimensional Hopf ∗-algebra. Then the

dual of Ĥ is isomorphic to H as a Hopf ∗-algebra.

Proof. Consider the linear map I : H → ̂̂
H = H∗∗ defined by

(I(f), x) = I(f)(x) = (x, S(f))

for x ∈ Ĥ. Since S is bijective this map is a linear isomorphism.

Now let f, g ∈ H and x, y ∈ Ĥ be arbitrary. By definition of the pairing between̂̂
H and Ĥ we obtain

(I(fg), x) = (x, S(fg)) = (x, S(g)S(f)) = (x(1), S(f))(x(2), S(g)) = (I(f)I(g), x),

so that I(fg) = I(f)I(g). Similarly,

(I(f∗), x) = (x, S(f∗)) = (x∗, f)

= (Ŝ−1(x∗), S(f))

= (Ŝ(x)∗, S(f)) = (I(f), Ŝ(x)∗) = (I(f)∗, x)

so that I(f∗) = I(f)∗, and

(I(f)(1) ⊗ I(f)(2), x⊗ y) = (I(f), yx) = (yx, S(f))

= (y, S(f(2))(x, S(f(1)))

= (I(f(1))⊗ I(f(2)), x⊗ y),

which means (I⊗ I)∆ =
̂̂
∆I. Finally, we have (I(1), x) = (x, 1) = ϵ̂(x) = (1, x) and̂̂ϵ(I(f)) = (I(f), 1) = (1, S(f)) = ϵ(f).

Hence I is compatible with the Hopf ∗-algebra structures on H and
̂̂
H. □
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Let us next discuss Haar functionals. A left Haar functional for a Hopf algebra
H is a linear functional ϕ : H → C such that

(id⊗ϕ)∆(f) = ϕ(f)1

for all f ∈ H. Similarly, a right Haar functional for H is a linear functional
ψ : H → C such that

(ψ ⊗ id)∆(f) = ψ(f)1

for all f ∈ H.

Exercise 3. Let H be a Hopf algebra with invertible antipode. Show that if ϕ is a
left Haar functional for H then ψ(f) = ϕ(S(f)) is a right Haar functional.

LetH be a Hopf algebra with invertible antipode, and assume that ϕ is a left Haar
functional for H with ϕ(1) ̸= 0. We claim that ϕ is also a right Haar functional. To
shows this we may assume without loss of generality that ϕ(1) = 1. If we consider
the right Haar functional ψ = ϕ ◦ S, compare Exercise 3, we get

ϕ(f) = ϕ(f)ψ(1) = (ψ ⊗ ϕ)∆(f) = ψ(f)ϕ(1) = ψ(f)

for all f ∈ H, which means in particular that ϕ is a right Haar functional.
Recall that a linear functional ω : A → C on a ∗-algebra A is called positive if

ω(f∗f) ≥ 0 for all f ∈ A. Moreover, if A is unital then a positive linear functional
ω on A is called a state if ω(1) = 1. If a Hopf ∗-algebra admits a (left and right)
invariant Haar functional which is a state, we shall refer to this as a Haar state.
Note here that the antipode in a Hopf ∗-algebra is bijective, so that the above
discussion applies.

Exercise 4. Show that a Haar state on a Hopf ∗-algebra is unique if it exists.

Let us revisit our examples of Hopf ∗-algebras.

Example 2.5. a) If H = C(G) for a finite group G, the functional

ϕ(f) =
1

|G|
∑
t∈G

f(t)

is a Haar state.
b) If H = C∗(G) for a finite group G, the functional

ϕ̂

(∑
t∈G

ctut

)
= ce

is a Haar state.

The Hopf ∗-algebras in Example 2.3 are in fact finite quantum groups in the
following sense.

Definition 2.6. A finite quantum group is a Hopf ∗-algebra which admits a faithful
Haar state.

Here we recall that a state ω on a ∗-algebra A is called faithful if ω(f∗f) = 0
for f ∈ A implies f = 0. It turns out that a Haar state on a finite dimensional
Hopf ∗-algebra is automatically faithful. This follows from the fact that every finite
dimensional Hopf algebra is a Frobenius algebra, see [21, Theorem 2.1.3].

If H is a Hopf ∗-algebra with a positive faithful Haar state we will formally write
H = C(G) in analogy to the case of finite groups, and by slight abuse of terminology
say that G “is” a finite quantum group, rather than H. We will think of H as the
algebra of functions on the “virtual” object G, and view the dual Hopf ∗-algebra
Ĥ = C∗(G) as the group algebra of G.
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Since Ĥ = C∗(G) is the linear dual of H = C(G) and ϕ is faithful, we can define
a linear isomorphism F : C(G) → C∗(G) by setting

F(f)(h) = ϕ(hf)

for f, g ∈ H. As we will see in Lemma 2.8 below, this map can be viewed as an
analogue of the Fourier transform.

Exercise 5. Consider H = C(G) for a finite quantum group G. Show that Ĥ =

C∗(G) admits a left Haar functional ϕ̂ given by

ϕ̂(F(f)) = ϵ(f)

for all f ∈ H.

We will show next that the functional ϕ̂ is positive and faithful, so that Ĥ
becomes a finite quantum group.

Proposition 2.7. Keeping the notation from above, we have

ϕ̂(F(f)∗F(g)) = ϕ(f∗g)

for all f, g ∈ H. In particular, the functional ϕ̂ on Ĥ is positive and faithful, and

the Hopf ∗-algebra Ĥ is a finite quantum group.

Proof. For f, g, h ∈ C(G) we compute

(F(f)∗F(g), h) = (F(f)∗, h(1))(F(g), h(2))

= (F(f)∗, h(1))ϕ(h(2)g)

= (F(f)∗, h(1)g(2)S
−1(g(1)))ϕ(h(2)g(3))

= (F(f)∗, S−1(g(1)))ϕ(hg(2))

= ϕ(g∗(1)f)ϕ(hg(2))

= ϕ(f∗g(1))(F(g(2)), h),

using invariance of ϕ and the fact that ϕ is positive. Hence we obtain

ϕ̂(F(f)∗F(g)) = ϕ(f∗g(1))ϕ̂(F(g(2))) = ϕ(f∗g(1))ϵ(g(2)) = ϕ(f∗g),

as required.

This calculation shows that ϕ̂(F(f)∗F(f)) = ϕ(f∗f) ≥ 0 for all f ∈ H = C(G),

and ϕ̂(F(f)∗F(f)) = 0 iff f = 0. Since every element of Ĥ is of the form F(f) for

some f ∈ H this means that ϕ̂ is a faithful positive linear functional on Ĥ.

Now using that ϕ̂ is faithful we get ϕ̂(1) = ϕ̂(1∗1) > 0, and it follows from our

discussion further above that ϕ̂ is also right invariant. Upon dividing by ϕ̂(1), we

can normalise ϕ̂ to obtain a faithful Haar state on Ĥ. This means that Ĥ is a finite
quantum group. □

If G is a finite abelian group one can show that Ĥ identifies, as a finite quantum

group, with the algebra of functions C(Ĝ) where Ĝ is the Pontrjagin dual group

of G, compare [10, Chapter 4]. In the sequel we shall write Ĥ = C(Ĝ) also for a

general finite quantum group H = C(Ĝ), and call Ĝ the dual quantum group of G.

The positive Haar functional ϕ̂ on C(Ĝ) defined above satisfies ϕ̂(ϕ) = ϕ̂(F(1)) =

1. Let us point out that ϕ̂ fails to be a state. More precisely, it can be shown that

ϕ̂(1) = dim(H), see for instance [27, Proposition 3.4 and Theorem 3.14].

In order to justify why our normalisation of ϕ̂ is natural let us consider the GNS-
construction for the Haar state ϕ : C(G) → C. We will denoted the corresponding
Hilbert space by L2(G). Since C(G) is finite dimensional and ϕ is faithful, the
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construction of L2(G) amounts to viewing C(G) as a Hilbert space with the scalar
product

⟨Λ(f),Λ(g)⟩ = ϕ(f∗g)

for f, g ∈ C(G). Here we explicitly write the GNS-map Λ : C(G) → L2(G) in order
to distinguish elements of the algebra C(G) from elements of the Hilbert space
L2(G), but otherwise Λ is nothing but the identity map in disguise.

Similarly, we obtain the GNS-construction for ϕ̂ : C(Ĝ) → C, leading to the

Hilbert space L2(Ĝ). We write Λ̂ : C(Ĝ) → L2(Ĝ) for the corresponding GNS-
map.

Lemma 2.8. Let G be a finite quantum group. The Fourier transform F : C(G) →
C∗(G), given by F(f)(h) = ϕ(hf), induces a unitary isomorphism L2(G) → L2(Ĝ).

Proof. This follows immediately from Lemma 2.7. Indeed, we have

⟨Λ̂(F(f)), Λ̂(F(g))⟩ = ϕ̂(F(f)∗F(g)) = ϕ(f∗g) = ⟨f, g⟩
for all f, g ∈ H, which shows that F defines an isometric isomorphism with respect

to the scalar products on L2(G) and L2(Ĝ), respectively. □

Let us now study the structure of G from the Hilbert space perspective. We
obtain a linear operator W ∗ ∈ B(L2(G)⊗ L2(G)) by setting

W ∗(Λ(f)⊗ Λ(g)) = (Λ⊗ Λ)(∆(g)(f ⊗ 1)) = Λ(g(1)f)⊗ Λ(g(2))

for all f, g ∈ C(G). As we shall see, this operator encodes essentially all the
information of our quantum group and its dual.

Lemma 2.9. The operator W ∗ is unitary, with inverse given by

W (Λ(f)⊗ Λ(g)) = Λ(S−1(g(1))f)⊗ Λ(g(2))

for f, g ∈ H.

Proof. Using the invariance property of ϕ we calculate

⟨W ∗(Λ(f)⊗ Λ(g)),W ∗(Λ(h)⊗ Λ(k))⟩ = ⟨Λ(g(1)f)⊗ Λ(g(2)),Λ(k(1)h)⊗ Λ(k(2))⟩
= ϕ(f∗g∗(1)k(1)h)ϕ(g

∗
(2)k(2))

= ϕ(f∗h)ϕ(g∗k)

= ⟨Λ(f)⊗ Λ(g),Λ(h)⊗ Λ(k)⟩,

which shows that W ∗ is an isometry. Since L2(G) is finite dimensional it follows
that W ∗ is in fact a unitary. To verify the formula for its adjoint W , we calculate

W ∗W (Λ(f)⊗ Λ(g)) =W ∗(Λ(S−1(g(1))f)⊗ Λ(g(2)))

= Λ(g(2)S
−1(g(1))f)⊗ Λ(g(3))

= ϵ(g(1))Λ(f)⊗ Λ(g(2)) = Λ(f)⊗ Λ(g)

for all f, g, using the antipode and counit axioms for C(G)cop. □

The operatorW ∈ B(L2(G)⊗L2(G)) from Lemma 2.9 is called the Kac-Takesaki
operator of G.

In the sequel we will use the leg numbering notation for operators on multiple
tensor products. For instance, we write W12 for the operator W ⊗ id ∈ B(L2(G)⊗
L2(G)⊗ L2(G)), and similarly W23 = id⊗W . In addition,

W13 = Σ12W23Σ12 = Σ23W12Σ23

where Σ ∈ B(L2(G)⊗L2(G)) is the tensor flip. In other words, the indices specify
in which tensor factors an operator acts.
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Exercise 6. Check that the Kac-Takesaki operator W is a multiplicative unitary,
that is, show that the pentagon equation

W12W13W23 =W23W12

holds in B(L2(G)⊗ L2(G)⊗ L2(G)).

The action of C(G) on itself by left multiplication induces a unital ∗-homomorphism

λ̂ : C(G) → B(L2(G)), given by

λ̂(f)(Λ(g)) = Λ(fg)

for f, g ∈ C(G). Since ϕ is assumed to be faithful the map λ is injective, and we
will often identify C(G) with a ∗-subalgebra of B(L2(G)). Note in particular that
C(G) is a C∗-algebra.

Lemma 2.10. We have

∆(f) =W ∗(1⊗ f)W

for all f ∈ C(G).

Proof. We compute

(W ∗(1⊗ f)W )(Λ(g)⊗ Λ(h)) = (W ∗(1⊗ f))(Λ(S−1(h(1))g)⊗ Λ(h(2)))

=W ∗(Λ(S−1(h(1))g))⊗ Λ(fh(2)))

= Λ(f(1)g)⊗ Λ(f(2)h)

= ∆(f)(Λ(g)⊗ Λ(h))

for all g, h ∈ C(G). This yields the claim. □

Our next goal is to describe the dual C∗(G) = C(Ĝ) inside B(L2(G)). Using the
Fourier transform from Lemma 2.8 we can transport the left regular representation

of C(Ĝ) = C∗(G) on L2(Ĝ) to L2(G) as follows. Let us define a linear map λ from
C∗(G) to B(L2(G)) by the formula

λ(x)Λ(f) = (Ŝ(x), f(1))Λ(f(2)) = (x, S−1(f(1)))Λ(f(2)),

for x ∈ C∗(G), f ∈ C(G). Then for all h ∈ C(G) we have

(F(λ(x)Λ(f)), h) = (x, S−1(f(1)))ϕ(hf(2))

= (x, S−1(S(h(1))h(2)f(1)))ϕ(h(3)f(2))

= (x, h(1))ϕ(h(2)f)

= (x, h(1))(F(f), h(2))

= (xF(f), h),

which means that Fλ(x)F−1 corresponds to the GNS-representation of C(Ĝ) on

L2(Ĝ). In particular, the above formula yields a faithful ∗-representation λ :
C∗(G) → B(L2(G)), and we we may identify C∗(G) with a ∗-subalgebra ofB(L2(G))
in this way.

Exercise 7. The comultiplication ∆̂ for C∗(G) is given by

∆̂(x) = Ŵ ∗(1⊗ x)Ŵ

where Ŵ = ΣW ∗Σ. Here Σ denotes the flip map on L2(G)⊗ L2(G).
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Let us verify that Ŵ = ΣW ∗Σ corresponds indeed to the Kac-Takesaki operator

of Ĝ under Fourier transform. To this end note that for any elements f, g ∈ C(G)
we obtain

(F ⊗ F)(ΣW ∗Σ)(Λ(f)⊗ Λ(g)) = (F ⊗ F)(Λ(f(2))⊗ Λ(f(1)g))

= Λ̂(F(f(2)))⊗ Λ̂(F(f(1)g)).

Now, for h, k ∈ C(G) we compute

(F(f(2))⊗F(f(1)g), h⊗ k) = ϕ(hf(2))ϕ(kf(1)g)

= ϕ(h(3)f(2))ϕ(kS(h(1))h(2)f(1)g)

= ϕ(kS(h(1))g)ϕ(h(2)f)

= (F(g), kS(h(1)))(F(f), h(2))

= (F(g)(1), S(h(1)))(F(f), h(2))(F(g)(2), k)

= (Ŝ−1(F(g)(1))F(f)⊗F(g)(2), h⊗ k),

and therefore the previous calculation gives indeed

(F ⊗ F)(ΣW ∗Σ)(Λ(f)⊗ Λ(g)) = Λ̂(F(f(2)))⊗ Λ̂(F(f(1)g))

= (Λ̂⊗ Λ̂)(Ŝ−1(F(g)(1))F(f)⊗F(g)(2))

= Ŵ (Λ̂(F(f))⊗ Λ̂(F(g))).

One can check that the algebra H = C(G) ⊂ B(L2(G)) consists precisely

of all operators (id⊗ω)(W ) for ω ∈ B(L2(G))∗. Similarly, one finds that Ĥ =
C∗(G) ⊂ B(L2(G)) identifies with the set of all operators of the form (ω ⊗ id)(W )
for ω ∈ B(L2(G))∗. In the general setting of locally compact quantum groups these
descriptions are key to the development of the theory.

There are various procedures to construct finite quantum groups out of simpler
ingredients. To conclude this section we shall briefly describe a prominent example,
namely the Drinfeld double of a finite quantum group. For a proof of the following
result, in a more general setting, see [30, Chapter 4].

Proposition 2.11. Let G be a finite quantum group. Then

C(D(G)) = C(G)⊗ C∗(G),

equipped with the tensor product ∗-algebra structure, the comultiplication

∆D(G) = (id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂),

the counit

ϵD(G)(f ⊗ x) = ϵ(f)ϵ̂(x),

and the antipode

SD(G)(f ⊗ x) =W−1(S(f)⊗ Ŝ(x))W

is a Hopf ∗-algebra, defining a finite quantum group D(G) with Haar state given by

ϕD(G) = ϕ⊗ ϕ̂.

This quantum group is called the Drinfeld double of G.

IfG is a classical abelian group then C(D(G)) = C(G)⊗C∗(G) is equipped simply
with the tensor product Hopf ∗-algebra structure. However, if G is nonabelian then
C(D(G)) is neither commutative nor cocommutative, thus providing a first example
of a finite quantum group which does not correspond to a group, or a group dual.

As explained above, general theory yields the Hopf ∗-algebra C∗(D(G)) which
plays the role of the group C∗-algebra of D(G). In the literature, often the Hopf
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algebra C∗(D(G)) is called the Drinfeld double C(G), and C(D(G)) is sometimes
referred to as the Drinfeld codouble.

3. Hopf C∗-algebras and locally compact quantum groups

In this section we extend our considerations to general locally compact quantum
groups. The theory is significatly more involved, however, and we will only sketch
some basic definitions and key facts.

Our starting point is the following definition.

Definition 3.1. A Hopf C∗-algebra is a C∗-algebra H together with a nondegenerate
∗-homomorphism ∆ : H →M(H ⊗H) satisfying the coassociativity relation

(∆⊗ id)∆ = (id⊗∆)∆

and the density conditions

[∆(H)(H ⊗ 1)] = H ⊗H = [∆(H)(1⊗H)].

Here ⊗ denotes the minimal tensor product of C∗-algebras.
A morphism between Hopf C∗-algebras (H,∆H) and (K,∆K) is a nondegenerate
∗-homomorphism f : H → K such that ∆Kf = (f ⊗ f)∆H .

Comparing Definition 3.1 with Definition 2.1, it is conspicuous that there is no
mentioning of a counit or antipode in the C∗-setting. It turns out that both these
maps are typically unbounded in the operator algebraic setting, and therefore it
is difficult to formalise them abstractly. However, we will see in section 6 how to
construct ϵ and S for any unital Hopf C∗-algebra from the density conditions.

In the commutative case, the notion of a Hopf C∗-algebra has a very transparent
interpretation. Recall that a semigroup G has right cancellation if rt = st for all
t ∈ G implies r = s, and G has left cancellation if tr = ts for all t ∈ G implies
r = s. We say that G has cancellation if it has both left and right cancellation.

Proposition 3.2. Let H be a Hopf C∗-algebra whose underlying C∗-algebra is com-
mutative. Then H ∼= C0(G) for a locally compact semigroup G with cancellation.
Conversely, every locally compact semigroup G with cancellation gives rise to a Hopf
C∗-algebra H = C0(G).

Proof. From the fact that H is commutative we get that H = C0(G) for a locally
compact space G. Moreover, since C0(G)⊗C0(G) ∼= C0(G×G), the nondegenerate
∗-homomorphism ∆ induces a continuous map G × G → G, and coassociativity
means that this turns G into a semigroup.

It remains to show that the cancellation conditions are equivalent to the density
conditions. Assume first that the density condition [∆(H)(1⊗H)] = H ⊗H holds.
Morever assume that r, s ∈ G satisfy rt = st for all t ∈ G. Then f1(tx)f2(x) =
f1(sx)f2(x) for all f1, f2 ∈ C0(G), and since ∆(f1)(1 ⊗ f2)(r, x) = f1(rx)f2(x)
we see from the density condition that f(s) = f(t) for all f ∈ C0(G), and this
means s = t. Hence G satisfies right cancellation. In a similar way one shows that
[∆(H)(H ⊗ 1)] = H ⊗H implies that G has left cancellation.

Conversely, assume that G has right cancellation and consider A = ∆(H)(1⊗H).
Due to commutativity of H, it is easy to check that this is a ∗-subalgebra of H⊗H.
We claim that A separates the points of G × G and vanishes nowhere. Explicitly,
for distinct points (r1, s1), (r2, s2) ∈ G × G we find an element of A of the form
h = ∆(f)(1⊗ g) such that h(r1, s1) ̸= h(r2, s2). If s1 ̸= s2 it suffices to take f, g ∈
C0(G) such that f(rs1) = f(rs2) and g(s1) ̸= g(s2), and if s1 = s = s2 we have
r1s ̸= r2s by right cancellation, and we find f, g ∈ C0(G) such that f(r1s) ̸= f(r2s)
and g(s) ̸= 0. Moreover, for any (r, s) ∈ G × G we find f, g ∈ C0(G) such that
f(rs) ̸= 0 and g(s) ̸= 0. Then h = ∆(f)(1 ⊗ g) ∈ A satisfies h(r, s) ̸= 0. The
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Stone-Weierstraß theorem therefore implies that A is dense in H⊗H = C0(G×G).
The proof of the other density condition is analogous. □

Proposition 3.2 shows that the notion of a Hopf C∗-algebra is not sufficient to
encode the concept of a locally compact group. In order to obtain a sensible notion
of a locally compact quantum group one needs to find additional conditions that
single out groups from semigroups with cancellation. The most elegant solution to
this problem, due Kustermans and Vaes [13], can be phrased as follows.

Definition 3.3. A locally compact quantum group G is given by a Hopf C∗-algebra
H = Cr

0(G) together with a faithful left Haar weight φ and a faithful right Haar
weight ψ on Cr

0(G).

Of course, the first task here is to explain what we mean by faithful left or right
Haar weights. Rougly speaking, these weights are noncommutative versions of the
left and right Haar measures of a locally compact group.

In order to make this precise let us review some related definitions and facts.
Assume that A is a C∗-algebra and write A+ for the positive part of A, so that

A+ = {a∗a | a ∈ A}.
A weight on A is a map φ : A+ → [0,∞] such that

φ(a+ b) = φ(a) + φ(b)

φ(λa) = λφ(a)

for all a, b ∈ A+ and λ ≥ 0. Here we use the convention 0 · ∞ = 0.
A weight φ on A is called lower semicontinuous if for every λ ≥ 0 the set

{a ∈ A+ | φ(a) ≤ λ} is closed in A. It is called densely defined if the set

Nφ = {a ∈ A | φ(a∗a) <∞}
is dense in A, and faithful if φ(a∗a) = 0 for a ∈ A implies a = 0.

Definition 3.4. Let A be a C∗-algebra and let φ : A+ → [0,∞] be a lower semi-
continuous, densely defined weight. Assume that there exists a norm-continuous
one-parameter group (σt)t∈R of ∗-automorphisms of A such that φσt = φ for all
t ∈ R. Moreover assume that for all a, b ∈ Nφ ∩ N ∗

φ there exists a bounded con-
tinuous function f on the strip {z ∈ C | 0 ≤ ℑ(z) ≤ 1}, analytic in the interior,
satisfying

f(t) = φ(σt(a)b), f(t+ i) = φ(bσt(a))

for all t ∈ R. Then φ is called a KMS-weight on A, and (σt)t∈R is called a modular
automorphism group of φ.

We remark that the modular automorphism group is uniquely determined by the
weight φ if φ is faithful. Roughly speaking, the KMS-condition ensures that the
weight behaves well when one wants to pass from the C∗-algebra level to the von
Neumann algebra level.

A weight φ on a Hopf ∗-algebra H is called left invariant if for all positive linear
functionals ω on A and a ∈ A+ we have

φ((ω ⊗ id)∆(a)) = φ(a)ω(1).

Here we note that (ω⊗ id)∆(a) ∈ A, by the density condition (A⊗1)∆(A) ⊂ A⊗A,
and we recall that ω can be extended to a positive linear functional on the multiplier
algebraM(A), so that the expression ω(1) makes sense. In a similar way one defines
the notion of right invariance.

Definition 3.5. A left Haar weight on a Hopf C∗-algebra H is a left invariant, lower
semicontinuous, densely defined KMS-weight on H. Similarly, a right Haar weight
on H is a right invariant, lower semicontinuous, densely defined KMS-weight.
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As already indicated above, the following fundamental example motivates the
terminology in Definition 3.5.

Example 3.6. Let G be a locally compact group. Then the algebra H = C0(G) of
continuous functions on G vanishing at infinity becomes a locally compact quantum
group with the comultiplication ∆ : C0(G) → M(C0(G) ⊗ C0(G)) = Cb(G × G)
given by

∆(f)(s, t) = f(st).

The left/right Haar weights on H are given by integration with respect to left/right
Haar measure.

Let G be a locally compact quantum group, and let H = L2(G) be a GNS-
construction for the left Haar weight φ of G. We consider

Nφ = {f ∈ Cr
0(G) | φ(f∗f) <∞},

and let Λ : Nϕ → H be the GNS-map. It is a nontrivial fact that one obtains a
unitary operator W ∈ B(H⊗H) by defining

W ∗(Λ(f)⊗ Λ(g)) = (Λ⊗ Λ)(∆(g)(f ⊗ 1))

for f, g ∈ Nϕ, which we call the Kac-Takesaki operator of G. As in the case of finite
quantum groups, the Kac-Takesaki operator W is multiplicative unitary, which
means that it satisfies the pentagon equation

W12W13W23 =W23W12.

The GNS-representation of Cr
0(G) on H is faithful, so that one can view Cr

0(G)
as a C∗-subalgebra of B(H), and the Hopf C∗-algebra structure of Cr

0(G) can be
described completely in terms of W by

Cr
0(G) = [(id⊗B(H)∗)(W )], ∆(f) =W ∗(1⊗ f)W.

Here B(H)∗ denotes the predual of B(H), consisting or all σ-weakly continuous
bounded linear functionals on B(H). Moreover, one obtains a second Hopf C∗-
algebra C∗

r (G) by setting

C∗
r (G) = [(B(H)∗ ⊗ id)(W )], ∆̂(x) = Ŵ ∗(1⊗ x)Ŵ .

This generalizes the construction of the reduced group C∗-algebra of a locally com-
pact group. The Hopf C∗-algebra C∗

r (G) admits again faithful left and right Haar

weights, thus defining a locally compact quantum group Ĝ, called the dual of G. It
can be shown that W ∈M(Cr

0(G)⊗ C∗
r (G)) ⊂ B(H⊗H). For the details we refer

to [13].
There are also maximal versions C f

0(G) and C∗
f (G) of the function algebra and

the group algebra of a locally compact quantum group [12]. These are again Hopf
C∗-algebras, and there are canonical surjective ∗-homomorphisms C f

0(G) → Cr
0(G)

and C∗
f (G) → C∗

r (G), which are morphisms of Hopf C∗-algebras. Roughly speaking,
the relation between C f

0(G) and C
r
0(G) and the relation between C∗

f (G) and C
∗
r (G)

is like the relation between the full and reduced group C∗-algebras of a locally
compact group.

Definition 3.7. A compact quantum group is a locally compact quantum group G for
which the C∗-algebra C f

0(G) is unital.

If G is a compact quantum we will write C f(G) = C f
0(G) and Cr(G) = Cr

0(G).
Note that both C f(G) and Cr(G) are unital Hopf C∗-algebras.



QUANTUM GROUPS 15

4. Compact quantum groups

We shall now focus our attention on the theory of compact quantum groups.
Instead of working directly from Definition 3.7, we will however start from a weaker
hypothesis, namely by studying arbitrary unital Hopf C∗-algebras. This has various
advantages, and makes it easier to describe concrete examples since less data is
required. It is a nontrivial fact that this gives essentially the same result as the
theory of compact quantum groups in the sense of Definition 3.7, and we will only
come back to this point at the end of section 6.

The most important result about unital Hopf C∗-algebras, which really makes
everything work, is the following theorem due to Woronowicz [33].

Theorem 4.1. Let H be a unital Hopf C∗-algebra. Then there exists a unique state
ϕ on H such that

(ϕ⊗ id)∆(f) = ϕ(f)1 = (id⊗ϕ)∆(f)

for all f ∈ H.

For a proof of Theorem 4.1 see for instance [23, Section 1.2]. We note that
uniqueness of ϕ is easy; indeed, the same argument as for Exercise 4 in section 2
works.

In view of Theorem 4.1, the difference between a general unital Hopf C∗-algebra
H and a compact quantum group in the sense of Definition 3.7 is that the Haar
state ϕ : H → C need not be faithful. Also, it is not clear at this point that ϕ
satisfies the KMS-property.

Exercise 8. Show that every compact semigroup with cancellation is a compact
group. Use this to show that commutative unital Hopf C∗-algebras correspond to
compact groups.

We also obtain examples of unital Hopf C∗-algebras starting from arbitrary dis-
crete groups.

Example 4.2. Let Γ be a discrete group. Show that the full group C∗-algebra C∗
f (Γ)

is a unital Hopf C∗-algebra with coproduct ∆̂(ut) = ut ⊗ ut for all t ∈ Γ. Moreover
show that the same formula defines a unital Hopf C∗-algebra structure on C∗

r (Γ).

Perhaps the most prominent example in the theory is the compact quantum
group SUq(2) of Woronowicz [32].

Definition 4.3. Let q ∈ (0, 1]. The C∗-algebra C(SUq(2)) is the universal C
∗-algebra

generated by elements α and γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1.

The comultiplication ∆ : C(SUq(2)) → C(SUq(2))⊗ C(SUq(2)) is defined by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

Since the entries of a unitary matrix have norm at most one, the C∗-algebra
C(SUq(2)) can be viewed as the completion of the ∗-algebra generated by α and
γ, with the relations in 4.3 and the norm obtained by considering arbitrary ∗-
representations on a Hilbert space. From universality of C(SUq(2)) one checks
easily that ∆ : C(SUq(2)) → C(SUq(2)) ⊗ C(SUq(2)) is indeed a well-defined
unital ∗-homomorphism.

To verify that C(SUq(2)) is a unital Hopf C∗-algebra we need the following
lemma, compare [23, Proposition 1.1.4].
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Lemma 4.4. Assume that H is a unital C∗-algebra generated by elements uij for
1 ≤ i, j ≤ n such that the matrix u = (uij) and u, the transpose of u

∗, are invertible,
and that ∆ : H → H ⊗H is a unital ∗-homomorphism such that

∆(uij) =
∑
k

uik ⊗ ukj

for all i, j. Then H is a unital Hopf C∗-algebra.

Proof. It is evident that ∆ satisfies coassociativity, and it only remains to check
the density conditions. To prove that ∆(H)(1⊗H) is dense in H ⊗H it suffices to
show that the space

B = {f ∈ H | f ⊗ 1 =
∑
i

∆(ai)(1⊗ bi) for some ai, bi ∈ H}

is dense in H. Here ths sum in the expression on the right hand side is finite.
Note first that B is an algebra since if f =

∑
i ∆(ai)(1⊗bi), g =

∑
j ∆(xj)(1⊗yj)

then

fg ⊗ 1 =
∑
i

∆(ai)(1⊗ bi)(g ⊗ 1)

=
∑
i

∆(ai)((g ⊗ 1)(1⊗ bi)

=
∑
i,j

∆(aixi)(1⊗ yjbi).

Hence it is enough to show that B contains the generators uij and their adjoints.
To this end let (vij) be the inverse of u and write

uij ⊗ 1 =
∑
k

uik ⊗ δkj =
∑
k,l

uik ⊗ uklvlj =
∑
l

∆(uil)(1⊗ vlj .

Similarly let (wij) be the inverse of u and compute

u∗ij ⊗ 1 =
∑
k

u∗ik ⊗ δkj =
∑
k,l

u∗ik ⊗ u∗klwlj =
∑
l

∆(u∗il)(1⊗ wlj .

We conclude that B is dense in H, and hence [∆(H)(1⊗H)] = H ⊗H.
The other density condition [∆(H)(H ⊗ 1)] = H ⊗ H is verified in a similar

way. □

Now let H = C(SUq(2)) for some q ∈ (0, 1] and consider

u =

(
α −qγ∗
γ α∗

)
=

(
u11 u12
u21 u22

)
∈M2(C(SUq(2))).

It is easy to check that the defining relations in Definition 4.3 are equivalent to
saying that u is a unitary matrix, and we get

u =

(
α∗ −qγ
γ∗ α

)
=

(
0 −1
1 0

)(
α −γ∗
qγ α∗

)(
0 1
−1 0

)
=

(
0 −1
1 0

)(
q−1/2 0
0 q1/2

)(
α −qγ∗
γ α∗

)(
q1/2 0
0 q−1/2

)(
0 1
−1 0

)
=

(
0 −q1/2

q−1/2 0

)
u

(
0 q1/2

−q−1/2 0

)
.

Hence both u and u are invertible, and we can apply Lemma 4.4 to see that
C(SUq(2)) is indeed a unital Hopf C∗-algebra.
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Exercise 9. Show that for q = 1 the definition of SUq(2) recovers the classical group
SU(2), that is, show that there is an isomorphism

C(SU1(2)) ∼= C(SU(2))

of Hopf C∗-algebras.

Another source of examples comes from “quantum” analogues of free groups,
introduced by Wang and Van Daele in [28].

Definition 4.5. Let F ∈ GL(n,C) such that tr(F ∗F ) = tr((F ∗F )−1). The free
unitary quantum group U+

F is defined by the universal C∗-algebra Au(F ) = C(U+
F )

generated by elements uij for 1 ≤ i, j ≤ n satisfying the relations such that

u = (uij), FuF−1

are unitary. The comultiplication is given by ∆(uij) =
∑n

k=1 uik ⊗ ukj.

The origin of the matrix F in Definition 4.6 will become clear in our discussion
of the representation theory of compact quantum groups in section 6.

If F = id is the identity matrix we also write U+
n for U+

F , and Au(n) instead of
Au(F ). The definining relations in Definition 4.6 imply that there is a canonical
surjective ∗-homomorphism C(U+

n ) → C(Un) where Un is the group of unitary n×n
matrices.

Exercise 10. Show that the C∗-algebra C(Un) of functions on the unitary group Un

is the abelianisation of C(U+
n ).

One may write Au(F ) = C∗(FUF ) and think of this as an analogue of the
full group C∗-algebra of a free group. Indeed, there are various results about the
structure of these quantum groups supporting this point of view.

Let us next introduce an analogue of the above construction for orthogonal
groups, also discussed in [28].

Definition 4.6. Let F ∈ GL(n,C) such that FF = ±1. The free orthogonal quantum
group O+

F is defined by the universal C∗-algebra Ao(F ) = C(O+
F ) generated by

elements uij for 1 ≤ i, j ≤ n satisfying the relations such that u = (uij) is unitary
and

FuF−1 = u.

The comultiplication is again given by ∆(uij) =
∑n

k=1 uik ⊗ ukj.

We note that FF = ±1 implies that tr(F ∗F ) = tr((F ∗F )−1). Therefore Ao(F )
is a quotient of Au(F ). If F = id is the identity matrix we write O+

n for O+
F and

Ao(n) for Ao(F ), and it is not difficult to check that there is a canonical surjective
∗-homomorphism C(O+

n ) → C(On), where On is the group of orthogonal n × n
matrices, identifying C(On) with the abelianisation of C(O+

n ).
To conclude this section, let us discuss the quantum permutation groups intro-

duced by Wang [31].

Definition 4.7. Let n ∈ N. The quantum permutation group S+
n is the compact

quantum group given by the universal C∗-algebra generated by the entries of a magic
unitary n×n-matrix u = (uij), that is, C(S

+
n ) = As(n) is the universal C∗-algebra

generated by projections uij for 1 ≤ i, j ≤ n such that

n∑
i=1

uik = 1,

n∑
j=1

ukj = 1

for all 1 ≤ k ≤ n. The comultiplication ∆ : C(S+
n ) → C(S+

n )⊗C(S+
n ) is defined by

∆(uij) =
∑n

k=1 uik ⊗ ukj on the generators.
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One obtains a canonical morphism C(S+
n ) → C(Sn) of Hopf C∗-algebras, where

Sn is the symmetric group on n elements. In fact, in analogy to the case of Au(n)
and Ao(n) one checks that C(Sn) is the abelianisation of C(S+

n ).
The structure of the quantum permutation group S+

n easy to understand for
n = 1, 2, 3.

Exercise 11. Show that the canonical morphism of Hopf C∗-algebras C(S+
n ) →

C(Sn) is an isomorphism for n = 1, 2, 3.

For n ≥ 4 the C∗-algebra C(S+
n ) is infinite dimensional, and the morphism

C(S+
n ) → C(Sn) is no longer an isomorphism. In other words, for n ≥ 4 there

are genuine “quantum permutations”which are not visible from a classical perspec-
tive. There are interesting connections with free probability, the theory of nonlocal
games, and graph theory which all build on this fact [2], [16], [20].

5. Representation theory

Let us now discuss some elements of the representation theory of locally compact
quantum groups. For more background we refer to [33], [23], [18].

Definition 5.1. Let G be a locally compact quantum group. A unitary representation
π = (Hπ, U

π) of G consists of a Hilbert space Hπ and a unitary element Uπ ∈
M(Cr

0(G)⊗K(Hπ)) such that

(∆⊗ id)(Uπ) = Uπ
13U

π
23

in M(Cr
0(G)⊗ Cr

0(G)⊗K(Hπ)).

In this definition we are using the leg numbering notation from Section 2. Specif-
ically, if X ∈ M(Cr

0(G) ⊗K(H)) we write X23 = 1 ⊗X for the element X placed
in the last two tensor legs, and similarly X13 is acting in the first and third leg.

We note that Definition 5.1 makes sense for arbitrary Hopf C∗-algebras. In this
case, a unitary element U ∈M(H ⊗K(H)) satisfying (∆⊗ id)(U) = U13U23 is also
called a unitary corepresentation of H on H.

Example 5.2. The trivial representation of a locally compact quantum group G is the
unitary representation ϵ on Hϵ = C given by U ϵ = 1 ∈M(Cr

0(G))
∼=M(Cr

0(G)⊗C).

We should check that Definition 5.1 is compatible with the standard definition
of unitary representations for classical locally compact groups.

Recall that if G is a locally compact group, then a unitary representation π
of G on a Hilbert space Hπ in the classical sense is a strongly continuous group
homomorphism π : G → U(Hπ), where U(Hπ) is the unitary group of Hπ, see
for instance [10, Chapter 3]. That is, the group homomorphism π is required to
be continuous with respect to the given topology of G and the strong operator
topology on U(Hπ) ⊂ B(Hπ).

Proposition 5.3. Let G be a locally compact group. Then the definition of a unitary
representation of G in the sense of locally compact quantum groups is equivalent to
the classical definition of a unitary representation of G.

Proof. Let H be a Hilbert space. Then the multiplier algebra M(C0(G) ⊗K(H))
identifies canonically with the algebra Cb(G,B(H)) of strictly continuous bounded
functions G→ B(H), compare [25, Proposition 2.57]. We also recall that the strict
topology of B(H) = M(K(H)) agrees with the strong*-topology on bounded sets
[25, Lemma C.6].

It follows from these facts that a unitary element X ∈M(C0(G)⊗K(H)) is the
same thing as a strongly continuous map G → U(H) into the unitary group of H,
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which we will again denote by X. Moreover we have

(∆⊗ id)(X)(s, t) = X(st)

and
(X13X23)(s, t) = X(s)X(t)

for all s, t, interpreting both sides as functions on G × G with values in B(H).
Therefore a unitary X ∈ M(C0(G) ⊗K(H)) defines a unitary representation X :
G→ U(H) in the classical sense iff (∆⊗ id)(X) = X13X23. □

For any locally compact quantum group G, an important example of a unitary
representation is the left regular representation. By definition, the left regular repre-
sentation λ = (L2(G),W ) is the GNS-space L2(G) of the left Haar weight together
with the Kac-Takesaki operatorW ∈M(Cr

0(G)⊗C∗
r (G)) ⊂M(Cr

0(G)⊗K(L2(G))).
Here we are using the natural embedding C∗

r (G) → B(L2(G)), which by slight abuse
of notation is usually also denoted by λ. The pentagon equation for W implies that
(∆⊗ id)(W ) =W13W23 as required.

Exercise 12. Check that (L2(G),W ) reproduces the left regular representation λ :
G→ U(L2(G)) given by

λt(ξ)(s) = ξ(t−1s)

for ξ ∈ L2(G) if G is a classical locally compact group.

Let us continue with some further definitions.

Definition 5.4. Let G be a locally compact quantum group and let π = (Hπ, U
π), η =

(Hη, U
η) be unitary representations of G. An intertwiner from π to η is a bounded

linear operator T ∈ B(Hπ,Hη) such that

(1⊗ T )Uπ = Uη(1⊗ T ).

We write Mor(π, η) for the space of all intertwiners from π to η. Note that if
T ∈ Mor(π, η) then T ∗ ∈ Mor(η, π). In particular, this implies that the space
Mor(π, π) of self-intertwiners of π is a unital C∗-algebra.

We say that π and η are equivalent if there exists a unitary intertwiner between
them, and we write π ∼= η in this case. A unitary representation π is called irre-
ducible if Mor(π, π) = C id.

Lemma 5.5 (Schur’s Lemma). Let π, η be irreducible unitary representations of a
locally compact quantum group G. Then Mor(π, η) ∼= C iff π and η are equivalent,
and Mor(π, η) = 0 otherwise.

Proof. Pick a nonzero element T ∈ Mor(π, η). Then T ∗T ∈ Mor(π, π) = C id, hence
T ∗T = c id for some scalar c > 0. Similarly TT ∗ ∈ Mor(η, η) = C id is a nonzero
multiple of the identity. It follows that c−1/2T is a unitary intertwiner from π to η.
Hence π and η are equivalent. If π and η are not equivalent this argument shows
that Mor(π, η) = 0. □

If π = (Hπ, U
π) is a unitary representation of G and K ⊂ Hπ is a closed subspace

such that the orthogonal projection p onto K is an element of Mor(π, π) then we say
that K is a subrepresentation, or invariant subspace, of π. Note that in this case Uπ

induces canonically an element Uπ|K = (1⊗p)Uπ = Uπ(1⊗p) ∈M(Cr
0(G)⊗K(K)),

which defines a unitary representation π|K = (K, Uπ|K) in its own right.
If π = (Hπ, U

π), η = (Hη, U
η) are unitary representations of G then the direct

sum π ⊕ η is the unitary representation on Hπ ⊕Hη defined by

Uπ⊕η = Uπ ⊕ Uη,

using M(Cr
0(G)⊗K(Hπ))⊕M(Cr

0(G)⊗K(Hη)) ⊂M(Cr
0(G)⊗K(Hπ ⊕Hη)). In

a similar way one defines infinite direct sums.
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The tensor product π⊗ η of unitary representations π = (Hπ, U
π), η = (Hη, U

η)
of G is defined by Uπ⊗η = Uπ

12U
η
13 ∈M(Cr

0(G)⊗K(Hπ ⊗Hη)). Using

(∆⊗ id)(Uπ⊗η) = (∆⊗ id)(Uπ
12U

η
13)

= (∆⊗ id)(Uπ
12)(∆⊗ id)(Uη

13)

= Uπ
13U

π
23U

η
14U

η
24

= Uπ
13U

η
14U

π
23U

η
24

= Uπ⊗η
13 Uπ⊗η

23

we see that π ⊗ η is a unitary representation of G on Hπ⊗η = Hπ ⊗Hη.

Exercise 13. Let π, η, ρ be unitary representations of a locally compact quantum
group G. Show that

(π ⊗ η)⊗ ρ ∼= π ⊗ (η ⊗ ρ).

Moreover, show that π ⊗ ϵ ∼= π ∼= ϵ⊗ π, where ϵ is the trivial representation.

The collection of all unitary representations of a locally compact quantum group
forms naturally a C∗-tensor category. Moreover, in the case of compact quantum
groups, the C∗-tensor category of finite dimensional unitary representations is rigid.
This allows one to extend various techniques from the study of discrete groups to
the realm of compact quantum groups, and provides a link between quantum groups
and the theory of subfactors. We refer to [23] for further information.

6. Representations of compact quantum groups

From now on we will focus our attention on the representation theory of compact
quantum groups. In fact, we will rather consider arbitrary unital Hopf C∗-algebras
and their corepresentations. By slight abuse of terminology, at this point, we will
speak of a compact quantum group G in the sequel, meaning an arbitrary unital
Hopf C∗-algebra H = C(G). At the end of this section we explain how this links
up with Definition 3.7.

Let us first construct the left regular representation of G on L2(G). Here L2(G)
denotes the GNS-space of the Haar state ϕ, with associated GNS-map Λ : C(G) →
L2(G) and inner product ⟨Λ(f),Λ(g)⟩ = ϕ(f∗g) for all f, g ∈ C(G). In the sequel we
will identifyM(C(G)⊗K(L2(G)) with the algebra B(C(G)⊗L2(G)) of adjointable
operators on the Hilbert C(G)-module C(G)⊗L2(G), with the inner product given
by ⟨f ⊗ ξ, g ⊗ η⟩ = f∗g⟨ξ, η⟩, compare [15, Theorem 2.4].

With this in mind, we define a linear operatorW ∗ ∈ B(C(G)⊗L2(G)) by setting

W ∗(f ⊗ Λ(g)) = (id⊗Λ)(∆(g)(f ⊗ 1)).

Then we obtain

⟨W ∗(f ⊗ Λ(g)),W ∗(h⊗ Λ(k))⟩ = (id⊗ϕ)((f∗ ⊗ 1)∆(g∗)∆(k)(h⊗ 1))

= f∗(id⊗ϕ)(∆(g∗k))h

= f∗h⟨Λ(g),Λ(k)⟩
= ⟨f ⊗ Λ(g), h⊗ Λ(k)⟩,

which means that W ∗ is indeed a well-defined isometry. By the density condition
for H = C(G) we see that the image of W ∗ is dense in C(G) ⊗ L2(G), and we
conclude that W ∗ is a unitary.

Lemma 6.1. The operator W ∈ M(C(G) ⊗K(L2(G))) defines a unitary represen-
tation of G on L2(G).
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Proof. It suffices to show (∆ ⊗ id)(W ∗) = W ∗
23W

∗
13. Note first that since W ∗ is

right C(G)-linear we can write

W ∗(f ⊗ Λ(h)) = (id⊗λ̂)(∆(h))(1⊗ Λ(1))f,

where λ̂ : C(G) → B(L2(G)) is the GNS-representation. Using this description we
get

(∆⊗ id)(W ∗)(f ⊗ g ⊗ Λ(h))

= (id⊗ id⊗λ̂)((∆⊗ id)∆(h))((id⊗ id⊗Λ)(1⊗ 1⊗ 1))(f ⊗ g)

= (id⊗ id⊗Λ)((∆⊗ id)∆(h)(f ⊗ g ⊗ id)),

and then

(∆⊗ id)(W ∗)(f ⊗ g ⊗ Λ(h)) = (id⊗ id⊗Λ)((∆⊗ id)∆(h)(f ⊗ g ⊗ id))

= (id⊗ id⊗Λ)((id⊗∆)∆(h)(f ⊗ g ⊗ id))

=W ∗
23(id⊗ id⊗Λ)(∆(h)13(f ⊗ g ⊗ 1))

=W ∗
23W

∗
13(f ⊗ g ⊗ Λ(h))

for all f, g, h ∈ C(G). Since elements of this form span a dense linear subspace of
the Hilbert module C(G)⊗ C(G)⊗ L2(G) this yields the claim. □

Proposition 6.2. The left regular representation λ = (L2(G),W ) has the following
properties.

a) We have [(id⊗ωξ,η)(W ) | ξ, η ∈ L2(G)] = C(G).

b) We have W ∗(1⊗ λ̂(f))W = (id⊗λ̂)∆(f) for all f ∈ C(G).

Proof. a) Since C(G) is a ∗-algebra it suffices to establish the equivalent equality
[(id⊗ωξ,η)(W

∗) | ξ, η ∈ L2(G)] = C(G). For ξ = Λ(g), η = Λ(h) we compute

(id⊗ωξ,η)(W
∗)(f) = ⟨1⊗ Λ(g),W ∗(f ⊗ Λ(h))⟩

= ⟨(id⊗Λ)(1⊗ g), (id⊗Λ)∆(h)(f ⊗ 1)⟩
= (id⊗ϕ)((g∗ ⊗ 1)∆(h))f

for all f ∈ C(G). Since [(C(G) ⊗ 1)∆(C(G))] = C(G) ⊗ C(G) it follows that the
operators (id⊗ωξ,η)(W

∗) yield indeed a dense linear subspace of B(C(G)) = C(G).
b) We calculate

W ∗(1⊗ λ̂(f))(h⊗ Λ(g)) =W ∗(h⊗ Λ(fg))

= (id⊗Λ)(∆(fg)(h⊗ 1)

= (id⊗λ̂)∆(f)(id⊗Λ)(h⊗ Λ(g))

= (id⊗λ̂)∆(f)W ∗(h⊗ Λ(g))

for all g, h ∈ C(G). This yields the claim since W is unitary. □

We now come to the first main result concerning representations of compact
quantum groups.

Theorem 6.3. Every unitary representation of a compact quantum group is equiva-
lent to a direct sum of irreducible representations, and every irreducible represen-
tation is finite dimensional.

Proof. Assume that π = (H, U) is a unitary representation of the compact quantum
group G. It suffices to show that Mor(π, π) contains a nonzero positive compact
operator T . Then the spectral projection associated to a strictly positive eigenvalue
of T gives a finite dimensional invariant subspaces of H, and a Lemma of Zorn
argument completes the proof, compare [10, Theorem 5.2].
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In order to construct a compact self-intertwiner of π take an arbitrary element
L ∈ K(H). Then U∗(1⊗L)U is contained in C(G)⊗K(H), and hence the operator

T = (ϕ⊗ id)(U∗(1⊗ L)U)

is contained in K(H). Moreover we calculate

U∗(1⊗ T )U = (ϕ⊗ id⊗ id)(U∗
23U

∗
13(1⊗ 1⊗ L)U13U23)

= (ϕ⊗ id⊗ id)((∆⊗ id)(U∗)(1⊗ 1⊗ L)(∆⊗ id)(U))

= (ϕ⊗ id⊗ id)((∆⊗ id)(U∗(1⊗ L)U)

= 1⊗ (ϕ⊗ id)(U∗(1⊗ L)U)

= 1⊗ T,

using the invariance of the Haar state from Theorem 4.1. Equivalently, we have
U(1⊗ T ) = (1⊗ T )U , which means T ∈ Mor(π, π).

We note that it may well happen that T = 0 even though L is nonzero. However,
if pi is a net of finite rank projections in B(H) converging weakly to the identity
then the operators Ti = (ϕ ⊗ id)(U∗(1 ⊗ pi)U) converge weakly to the identity as
well. Explicitly, if ξ, η ∈ H then

ωξ,η((ϕ⊗ id)(U∗(1⊗ pi)U)) = ⟨Λ(1)⊗ ξ, (U∗(1⊗ pi)U)(Λ(1)⊗ η)⟩,
and the right hand side converges to ⟨ξ, η⟩ = ωξ,η(id). It follows that Mor(π, π)
contains indeed a nonzero positive compact operator as required.

Now assume that π is irreducible. Then the space Mor(π, π) contains only scalar
multiples of the identity by Lemma 5.5. Hence the above discussions shows that
the identity operator on H is compact, which means that the Hilbert space H must
be finite dimensional. □

Due to Theorem 6.3 it suffices to focus our attention on (irreducible) finite di-
mensional representations.

Proposition 6.4. Let π = (H, U) be a finite dimensional unitary representation of
the compact quantum group G. Then

B = [(ϕ⊗ id)(U(g ⊗ id)) | g ∈ C(G)]

is a unital C∗-algebra B ⊂ B(H) such that U ∈ C(G) ⊗ B. Moreover, if π is
irreducible then B = B(H).

Proof. For g ∈ C(G) we define

λ(g) = (ϕ⊗ id)(U(g ⊗ id)).

Then B is equal to the set of all λ(g) for g ∈ C(G). Indeed, these elements
form a linear subspace of B, and since B(H) is finite dimensional, this subspace is
automatically closed.

From the relation (∆⊗ id)(U) = U13U23 we get

U∗
13(∆⊗ id)(U(g ⊗ id)) = U23(∆(g)⊗ id).

Applying id⊗ϕ⊗ id on both sides gives

U∗(1⊗ λ(g)) = (id⊗ϕ⊗ id)(U23∆(g)⊗ id).

Multiplying this relation on the left by f∗ ⊗ id and applying ϕ⊗ id gives

λ(f)∗λ(g) = (ϕ⊗ id)((f∗ ⊗ id)U∗(1⊗ λ(g)))

= (ϕ⊗ ϕ⊗ id)(U23((f
∗ ⊗ 1)∆(g))⊗ id).

By the density conditions in Definition 3.1, elements of the form (f∗⊗ 1)∆(g) span
a dense linear subspace of C(G) ⊗ C(G). It follows that products of the form
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λ(f)∗λ(g) linearly span B. We conclude that B = B∗ and BB = B, which means
that B is a C∗-algebra.

Since U is unitary we get U(C(G) ⊗K(H)) = C(G) ⊗K(H), and this implies
BK(H) = K(H). In particular B contains id ∈ K(H).

Finally, picking h ∈ C(G) such that λ(h) = id we get from a relation established
further above that

U∗ = U∗(id⊗λ(h)) = (id⊗ϕ⊗ id)(U23∆(h)⊗ id),

which means that U∗ is contained in C(G)⊗B. Hence the same holds for U .
It follows that every operator in the commutant of B ⊂ B(H) is an intertwiner

of π. If π is irreducible then this means B = B(H). □

An n-dimensional unitary representation π = (H, U) of G can be viewed as a
matrix U = (Uij) ∈ C(G) ⊗ K(H) ∼= Mn(C(G)) upon choosing an orthonormal
basis e1, . . . , en of H. More precisely, we may write

U =
∑
i,j

Uij ⊗ eij

where eij = |ei⟩⟨ej | are the corresponding matrix units.

Lemma 6.5. Let G be a compact quantum group, let H be a finite dimensional
Hilbert space and consider U =

∑
i,j Uij ⊗ eij ∈ C(G)⊗K(H) with respect to some

orthonormal basis e1, . . . , en of H. Then the following conditions are equivalent.

a) U defines a unitary representation of G on H.
b) (Uij) is a unitary matrix in Mn(C(G)) such that ∆(Uij) =

∑
k Uik ⊗Ukj for all

1 ≤ i, j ≤ n.

If these equivalent conditions are satisfied, then an element T = (Tij) ∈ B(H) is
an intertwiner of (H, U) iff ∑

k

TikUkj =
∑
k

UikTkj

for all 1 ≤ i, j ≤ n.

Proof. Clearly, the element U is unitary iff the matrix (Uij) is unitary. Moreover
we have

(∆⊗ id)(U) =
∑
i,j

∆(Uij)⊗ eij

and

U13U23 =
∑
i,k,l,j

Uik ⊗ Ulj ⊗ eikelj =
∑
i,k,j

Uik ⊗ Ukj ⊗ eij .

Comparing these expressions, and using that the matrix units eij are linearly inde-
pendent, yields the equivalence of a) and b).

Now consider T ∈ B(H). Then we compute

(1⊗ T )U =
∑
i,j,k,l

(Tik ⊗ eik)(Ulj ⊗ elj) =
∑
i,j,k

TikUkj ⊗ eij

and

U(1⊗ T ) =
∑
i,j,k,l

(Uik ⊗ eik)(Tlj ⊗ elj) =
∑
i,j,k

UikTkj ⊗ eij .

It follows that T is an intertwiner if and only if T = (Tij), when viewed as a matrix
in C(G) with entries being scalar multiples of the identity, commutes with U . □
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Let π = (H, U) be a finite dimensional unitary representation of a compact
quantum group G and consider the map adl : K(H) → C(G)⊗K(H) given by

adl(T ) = U∗(1⊗ T )U.

Then adl is an injective unital ∗-homomorphism, and we calculate

(∆⊗ id)adl(T ) = (∆⊗ id)(U∗(1⊗ T )U)

= (∆⊗ id)(U∗)(1⊗ 1⊗ T )(∆⊗ id)(U)

= U∗
23U

∗
13(1⊗ 1⊗ T )U13U23

= (id⊗adl)adl(T ).

We call adl the left adjoint action on K(H), and say that a state θ on K(H) is
invariant under this action if

(id⊗θ)adl(T ) = θ(T )1

for all T ∈ K(H). In section 7 we will see that the left adjoint action is indeed an
example of an action in the sense of quantum groups.

Theorem 6.6. Assume that the unitary representation π = (H, U) is irreducible.
Then K(H) admits a unique invariant state with respect to the left adjoint action,
and this state is faithful.

Proof. To show existence, let ω be any state on K(H) and consider θ = (ϕ⊗ω)adl.
This is clearly a state on K(H), and we have

(id⊗θ)adl(T ) = (id⊗ϕ⊗ ω)(id⊗adl)adl(T )

= (id⊗ϕ⊗ ω)(∆⊗ id)adl(T )

= 1⊗ (ϕ⊗ ω)adl(T )

= 1θ(T )

for all T ∈ K(Hπ), due to invariance of the Haar state ϕ. Hence θ is invariant.
Since π = (H, U) is irreducible we have Mor(π, π) = C id by Lemma 5.5, and

therefore the only elements X ∈ K(H) with adl(X) = 1 ⊗ X are multiples of the
identity. If we consider T ∈ B(H) and set ρ(T ) = (ϕ⊗ id)adl(T ), then

adl(ρ(T )) = (ϕ⊗ id⊗ id)(id⊗adl)adl(T )

= (ϕ⊗ id⊗ id)(∆⊗ id)adl(T )

= 1⊗ (ϕ⊗ id)adl(T )

= 1⊗ ρ(T ),

so that we get ρ(T ) ∈ C1 ⊂ B(H). It follows that we can view ρ as a linear
functional on B(H).

Now assume that η is an invariant state on K(H). Then

η(T ) = η(T )ϕ(1) = ϕ((id⊗η)adl(T ))
= (ϕ⊗ η)adl(T )

= (ϕ⊗ ϕ⊗ η)(∆⊗ id)adl(T )

= (ϕ⊗ ϕ⊗ η)(id⊗adl)adl(T )

= (ϕ⊗ η)adl(T )

= η((ϕ⊗ id)adl(T ))

= η(1)ρ(T ) = ρ(T ),

and hence η = ρ. Applying this argument to the invariant state θ from above we
get θ = ρ, and thus η = ρ = θ. In particular, we see that our initial construction of
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θ is independent of the choice of the state ω, and that is gives the unique invariant
state on K(H).

The tricky bit is to show that θ is faithful. By general facts about states on finite
dimensional matrix algebras, there is a positive element Q ∈ B(H) = K(H) with
tr(Q) = 1 such that θ(T ) = tr(TQ). In order to show that θ is faithful we have to
prove that Q is invertible.

Let us choose an orthonormal basis e1, . . . , en of H diagonalising Q. Without
loss of generality, we shall arrange the basis vectors such that Qii > 0 for 1 ≤ i ≤ d
and Qii = 0 for d < i ≤ n. Then our task is to show that d = n.

From the above description of θ = ρ we get

Qij1 = θ(eij) = (ϕ⊗ id)adl(eij)

=
∑

m,n,k,l

(ϕ⊗ id)((U∗
nm ⊗ emn)(1⊗ eij)(Ukl ⊗ ekl))

=
∑
m,l

ϕ(U∗
imUjl)eml.

This implies ϕ(U∗
imUjl) = 0 if i ̸= j, or if i = j and m ̸= l, and that ϕ(U∗

ilUil) = Qii

is independent of l. Using these relations we obtain

Qii = Qii

∑
k

U∗
kjUkj

=
∑
k

ϕ(U∗
ikUik)U

∗
kjUkj

=
∑
k,l

ϕ(U∗
ikUil)U

∗
kjUlj

= ϕ(U∗
ijUij)

=
∑
k,l

U∗
ikUilϕ(U

∗
kjUlj)

=
∑
k

U∗
ikUikϕ(U

∗
kjUkj) =

∑
k

QkkU
∗
ikUik.

If Qii = 0 we get QkkU
∗
ikUik = 0 for all k since the elements U∗

ikUik are positive.
This means Uik = 0 for d + 1 ≤ i ≤ n and 1 ≤ k ≤ d, and can be interpreted as
saying that U has upper triangular form.

In the notation of Proposition 6.4 this implies ⟨ei, λ(f)ek⟩ = ϕ(Uikf) = 0 for
all f ∈ C(G) provided d + 1 ≤ i ≤ n and 1 ≤ k ≤ d. If d < n we thus obtain a
contradiction to Proposition 6.4 since π is assumed to be irreducible. Hence d = n
as required. □

We note that faithfulness of the invariant state in Theorem 6.6 is straightfor-
ward if the Haar state ϕ of C(G) is assumed to be faithful. Indeed, under this
assumption one can simply use that adl is injective, combined with the fact that
the (minimal) tensor product of faithful states is faithful. This means in particular
that Proposition 6.4 is not needed in the proof of Theorem 6.6 in this case.

There is also a right handed version of the above discussion. More precisely, if
π = (H, U) is a finite dimensional unitary representation we can use the canonical
flip map to view U as an element of K(H) ⊗ C(G). The right adjoint action
on K(H) is the unital ∗-homomorphism adr : K(H) → K(H) ⊗ C(G) given by
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adr(T ) = U(T ⊗ 1)U∗. Using Lemma 6.5 one checks

(id⊗∆)adr(eij) =
∑

k,l,m,n

(id⊗∆)(ekl ⊗ Ukl)(eij ⊗ 1)(enm ⊗ U∗
mn)

=
∑
k,m

ekm ⊗∆(UkiU
∗
mj)

=
∑

k,l,m,n

ekl ⊗ UkmU
∗
ln ⊗ UmiU

∗
nj

=
∑
m,n

(adr ⊗ id)(emn ⊗ UmiU
∗
nj)

= (adr ⊗ id)adr(eij)

for all 1 ≤ i, j ≤ n = dim(H), and we conclude (id⊗∆)adr = (adr ⊗ id)adr.

Exercise 14. Let π = (H, U) be an irreducible unitary representation. Show that
K(H) admits a unique invariant state with respect to the right adjoint action, and
that this state is faithful.

If H is a Hilbert space we write H = H∗ for the conjugate Hilbert space. Recall
that H has the same underlying additive structure, but the scalar multiplication is
conjugate to the one in H. More precisely, for ξ ∈ H we have

c · ξ = c · ξ
for all c ∈ C. Moreover, the inner product of H is determined by

⟨ξ, η⟩ = ⟨η, ξ⟩
in terms of the inner product of H. We obtain an antimultiplicative ∗-isomorphism
j : B(H) → B(H) such that j(T )(ξ) = T ∗(ξ) for ξ ∈ H.

Now let U ∈ C(G)⊗K(H) be a finite dimensional unitary representation of G,
and set U = (id⊗j)(U∗) ∈ C(G) ⊗K(H). If e1, . . . , en is an orthonormal basis of
H then e1, . . . , en is an orthonormal basis of H and we get∑

i,j

U ij ⊗ |ei⟩⟨ej | = U

= (id⊗j)(U∗)

=
∑
i,j

(id⊗j)((Uij)
∗ ⊗ |ej⟩⟨ei|)

=
∑
i,j

(Uij)
∗ ⊗ |ei⟩⟨ej |,

noting that

j(|ej⟩⟨ei|)(ek) = |ei⟩⟨ej |(ek) = ⟨ej , ek⟩ei = |ei⟩⟨ej |(ek)
for all 1 ≤ i, j, k ≤ n. This gives

U ij = (Uij)
∗

for all 1 ≤ i, j ≤ n.

Proposition 6.7. Let π = (H, U) be a finite dimensional unitary representation
of a compact quantum group G. Then there exists an invertible positive element
F ∈ B(H) ∼= B(H) such that

U c = (id⊗F )U(id⊗F−1) ∈ C(G)⊗K(H)

is a unitary representation of G on H. If π is irreducible then F is uniquely deter-
mined up to a positive scalar.
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Proof. Due to Theorem 6.6, the invariant state θ on K(H) with respect to the left
adjoint action is given by θ(T ) = tr(TQ) for a positive invertible matrix Q.

Note that the calculation

Qiiδij = 1θ(eij)

= (id⊗θ)(adl(eij))

=
∑

m,n,k,l

(id⊗θ)((U∗
nm ⊗ emn)(1⊗ eij)(Ukl ⊗ ekl))

=
∑

m,n,k,l

U∗
nmUklθ(emneijekl)

=
∑
m,l

U∗
irUjlθ(eml) =

∑
m

U∗
imUjmQmm

from the proof of Theorem 6.6 can be interpreted as saying UQU t = Q. Since Q is
invertible we conclude that U = (U∗

ij) is right invertible.
In the same way we can consider the right adjoint action adr : K(H) → K(H)⊗

C(G). Let us write η for the unique invariant state on K(H), and note that
η(T ) = tr(TP ) for some positive invertible matrix P by Exercise 14. Picking an
orthonormal basis f1, . . . , fn on which P is diagonal, and using the corresponding
matrix units fij we calculate

Piiδij = 1η(fij)

= (η ⊗ id)(adr(fij))

=
∑

m,n,k,l

(η ⊗ id)((fkl ⊗ Ukl)(fij ⊗ 1)(fmn ⊗ U∗
nm))

=
∑

m,n,k,l

UklU
∗
nmη(fklfijfmn)

=
∑
n,k

UkiU
∗
njθ(fkn) =

∑
k

UkiU
∗
kjPkk

for all i, j. This shows U tPU = P, which means that the matrix U is left invertible.
Combining these facts, we conclude that U is invertible, with inverse given by

QU tQ−1 = P−1U tP . Set F = P 1/2 and let

U c = FUF−1.

Then

(U c)∗U c = (F−1U tF )(FUF−1) = F−1U tPUF−1 = F−1PF−1 = id

and

U c(U c)∗ = (FUF−1)(F−1U tF ) = (FUF−1)(F−1U tF ) = FP−1F = id,

which means that U c is unitary. Moreover we get

(∆⊗ id)((U c)ij) = ∆(FiiU
∗
ijF

−1
jj )

= Fii∆(U∗
ij)F

−1
jj

=
∑
k

FiiU
∗
ik ⊗ U∗

kjF
−1
jj

=
∑
k

FiiU
∗
ikF

−1
kk ⊗ FkkU

∗
kjF

−1
jj

=
∑
k

(U c)ik ⊗ (U c)kj ,
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so that Lemma 6.5 shows that U c is a unitary representation of G on H. We will
denote this representation by πc.

If T ∈ Mor(π, π) then Fj(T )F−1 ∈ Mor(πc, πc) since

(id⊗Fj(T )F−1)U c = (id⊗Fj(T )F−1)(id⊗F )U(id⊗F−1)

= (id⊗Fj(T ))(id⊗j)(U∗)(id⊗F−1)

= (id⊗F )(id⊗j)(U∗(1⊗ T ))(id⊗F−1)

= (id⊗F )(id⊗j)((1⊗ T )U∗)(id⊗F−1)

= (id⊗F )(id⊗j)(U∗)(id⊗j(T )F−1)

= U c(id⊗Fj(T )F−1).

In particular, if π is irreducible then the same is true for πc.
Finally, assume that V = EUE−1 is also a unitary representations for some

positive invertible operator E. Then T = EF−1 is a nonzero intertwiner from U c

to V . If π is irreducible then, by the previous observation, this must be a multiple
of the identity due to Lemma 5.5. □

We note that the proof of Proposition 6.7 shows also that, up to a positive scalar
multiple, the positive matrix P defining the invariant state on K(H) with respect
to the right adjoint action agrees with the inverse Q−1 of the matrix defining the
invariant state on K(H) with respect to the left adjoint action. In particular, there
exists a state which is invariant for both the left and the right adjoint actions iff P
and Q are multiples of the identity.

The unitary representation πc = (Hc, U
c) on Hc = H obtained from π = (H, U)

in Proposition 6.7 is called the conjugate representation of π and denoted πc. Note
that, a priori, the conjugate representation is defined only up to equivalence since
the operator F in Proposition 6.7 is not unique.

However, if π is irreducible then the uniqueness statement in Proposition 6.7
means that there is a unique F such that tr(F 2) = tr(F−2). For a general finite
dimensional representation we get a uniquely determined F by stipulating

tr(TF 2) = tr(TF−2)

for all T ∈ Mor(π, π). We then define the quantum dimension of π by

dimq(π) = tr(F 2) = tr(F−2),

where tr is the natural trace on B(H), satisfying tr(1) = dim(H). In the sequel, we
will always fix this choice of F , so that the conjugate representation is defined on
the nose, and not only up to equivalence, by the construction in Proposition 6.7.

Note that dimq(π) equals the classical dimension dim(π) = dim(Hπ) of the
Hilbert space Hπ iff F = id.

Exercise 15. Show that (π ⊗ η)c ∼= ηc ⊗ πc and (πc)c ∼= π for all finite dimensional
unitary representations of G.

Let us next introduce matrix coefficients. In fact, we have already been working
with matrix coefficients in our discussion above, but we now give a formal definition.
If π = (Hπ, U

π) is a unitary representation of G then we call the elements Uπ
ξ,η ∈

C(G) for ξ, η ∈ Hπ given by

Uπ
ξ,η = (id⊗ωξ,η)(U

π)

the matrix coefficients of π. Here ωξ,η : K(Hπ) → C is the vector functional given
by ωξ,η(T ) = ⟨ξ, T (η)⟩.

Definition 6.8. We denote by Pol(G) ⊂ C(G) the vector space consisting of all
matrix coefficients of finite dimensional unitary representations of G.
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Our aim is to show that Pol(G) is a Hopf ∗-algebra in a natural way. This will
require a few intermediate steps.

Proposition 6.9. The vector space Pol(G) is dense in L2(G).

Proof. According to Theorem 6.3 there exists a set I such that we can decompose

L2(G) ∼=
⊕
i∈I

Hi

as a direct sum of irreducible unitary representations. Hence the space of all ma-
trix coefficients (id⊗ωξ,η)(W ) such that ξ, η ∈ Hi for some i ∈ I is dense in
[(id⊗ωξ,η)(W ), ξ, η ∈ L2(G)]. The latter is equal to C(G) by Proposition 6.2. □

We write Irr(G) for the set of equivalence classes of irreducible representations
of G. For the sake of convenience it will be useful to fix an orthonormal basis of
the Hilbert space Hπ for (a representatives of) π ∈ Irr(G) such that the matrices
Fπ obtained in Proposition 6.7 are diagonal. In the sequel we shall call such bases
diagonal. We will also always assume the normalisation tr((Fπ)2) = tr((Fπ)−2).

With this in place let us now derive relations between matrix coefficients as
follows.

Proposition 6.10 (Schur orthogonality relations). Let G be a compact quantum group
and π, η ∈ Irr(G). Then, with respect to diagonal orthonormal bases of Hπ and Hη,
we have

ϕ((Uπ
ij)

∗Uη
kl) = δπη

δjlδik(F
π)−2

ii

dimq(π)

and

ϕ(Uπ
ij(U

η
kl)

∗) = δπη
δikδjl(F

π)2jj
dimq(π)

for all 1 ≤ i, j ≤ dim(π), 1 ≤ k, l ≤ dim(η).

Proof. We write adl : K(Hπ) → C(G)⊗K(Hπ), adl(T ) = (Uπ)∗(1⊗ T )Uπ for the
left adjoint action, and denote by θ : K(Hπ) → C the invariant state from Theorem
6.6.

Inspecting the arguments given in the proof of Theorem 6.6, and keeping in
mind the definition dimq(π) = tr((Fπ)2) = tr((Fπ)−2) of the quantum dimension,
we observe that θ(X) = dimq(π)

−1 tr(X(Fπ)−2). We thus compute

1

dimq(π)
tr(eik(F

π)−2) = θ(eik)

= (ϕ⊗ id)adl(eik)

=
∑

m,n,j,l

(ϕ⊗ id)((Uπ
mj)

∗ ⊗ ejm)(1⊗ eik)(U
π
nl ⊗ enl)

=
∑
j,l

ϕ((Uπ
ij)

∗Uπ
kl)ejl.

This gives

ϕ((Uπ
ij)

∗Uπ
kl) =

δjlδik(F
π)−2

ii

dimq(π)
,

which is the first of the required orthogonality relations in the case π = η.
If π ̸= η we can consider the representation Hπ ⊕Hη and the corresponding left

adjoint action on K(Hπ ⊕Hη). Since (ϕ⊗ id)adl(T ) is an intertwiner from Hπ to
Hη whenever T ∈ B(Hπ,Hη) the same calculation as above combined with Lemma
5.5 shows ϕ((Uπ

ij)
∗Uπ

kl) = 0 for all i, j, k, l.
The remaining set of orthogonality relations is obtained in a similar way by

considering the right adjoint action adr : K(Hπ) → K(Hπ)⊗ C(G) instead. □
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As a consequence of Proposition 6.10 we obtain linear bases of the vector space
Pol(G) as follows.

Corollary 6.11. For π ∈ Irr(G) let Uπ
ij be the matrix coefficients of π with respect

to a diagonal orthonormal basis of Hπ. Then the family of these elements, ranging
over all π ∈ Irr(G) and 1 ≤ i, j ≤ dim(π), is a vector space basis of Pol(G).

Assume that we have chosen diagonal orthonormal bases of the Hilbert spacesHπ

for all π ∈ Irr(G). Due to Corollary 6.11 we can define linear maps ϵ : Pol(G) → C
and S : Pol(G) → Pol(G) by setting

ϵ(Uπ
ij) = δij , S(Uπ

ij) = (Uπ
ji)

∗

for 1 ≤ i, j ≤ dim(π). Then we clearly have

(ϵ⊗ id)∆(Uπ
ij) =

∑
k

ϵ(Uπ
ik)U

π
kj = Uπ

ij =
∑
k

Uπ
ikϵ(U

π
kj) = (id⊗ϵ)∆(Uπ

ij)

for all π ∈ Irr(G), 1 ≤ i, j ≤ dim(π), and ϵ(1) = 1. Note that we get in fact
(ϵ ⊗ id)(U) = 1 ⊗ id for any finite dimensional unitary representation (H, U). In
particular, the above definition of ϵ does not depend on the choice of basis, and we
obtain

(ϵ⊗ id)(Uπ⊗η) = 1⊗ id = (ϵ⊗ id)(Uπ)(ϵ⊗ id)(Uη)

for all π, η ∈ Irr(G). This means ϵ(Uπ
ijU

η
kl) = δijδkl = ϵ(Uπ

ij)ϵ(U
η
kl) for all 1 ≤ i, j ≤

dim(π), 1 ≤ k, l ≤ dim(η), so that ϵ is an algebra homomorphism. Also, we have

1⊗ id = (ϵ⊗ id)(Uπc

) = (ϵ⊗ id)(FUπF−1) = F (ϵ⊗ id)(Uπ)F−1.

This means ϵ((Uπ
ij)

∗) = δij = ϵ(Uπ
ij) for all π ∈ Irr(G) and 1 ≤ i, j ≤ n. It follows

that ϵ is a ∗-homomorphism.
Similarly, we have (S ⊗ id)(U) = U∗, so that the definition of S is independent

of the choice of bases. We calculate

µ(S ⊗ id)∆(Uij) =
∑
k

m(U∗
ki ⊗ Ukj) =

∑
k

U∗
kiUkj = δij = ϵ(Uij),

and in the same way one verifies

µ(id⊗S)∆(Uij) =
∑
k

m(Uik ⊗ U∗
j ) =

∑
k

UikU
∗
jk = δij = ϵ(Uij).

Summarising this discussion, we have now completed the proof of the following key
result.

Theorem 6.12. Let G be a compact quantum group. The linear space Pol(G) of
matrix coefficients of G is naturally a unital Hopf ∗-algebra.

The Hopf ∗-algebra Pol(G) admits a left and right invariant Haar functional
given by the restriction of ϕ to Pol(G) ⊂ C(G). By construction, this functional
is a state on Pol(G). From the Schur orthogonality relations it follows that ϕ is
faithful on Pol(G), despite the fact that it need not be faithful on C(G).

Choose a diagonal orthonormal basis of Hπ for each π ∈ Irr(G). The Woronowicz
characters (fz)z∈C are the linear functionals fz : Pol(G) → C defined by

fz(U
π
ij) = (Fπ)2zij = δij(F

π
ii)

2z.

In the same way as in the construction of the counit ϵ of Pol(G) one checks that fz
is well-defined, and independent of the choice of diagonal basis. Note that we have
in fact f0 = ϵ.

Lemma 6.13. The Woronowicz characters (fz)z∈C satisfy the following relations.

a) The functionals fz are characters, that is, each fz is an algebra homomorphism
from Pol(G) to C.
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b) We have fz(g
∗) = f−z(g) for all z ∈ C and g ∈ Pol(G).

c) We have (fw ⊗ fz)∆(g) = fw+z(g) for all w, z ∈ C and g ∈ Pol(G).

Proof. a) This follows from the normalisation of the matrices Fπ for π ∈ Irr(G).
Indeed, we have (fz⊗id)(U) = F 2z for any finite dimensional unitary representation
(H, U) of G, where F is the uniquely determined matrix described in the discussion
following Proposition 6.7.
b) For any π ∈ Irr(G) we have Fπc

= (Fπ)−1, compare Exercise 15, and hence

fz((U
π
ij)

∗) = fz((Uπ)ij) = fz(((F
π)−1Uπc

Fπ)ij) = δij(F
π)−2z

ij = f−z(Uπ
ij)

for all z ∈ C. This yields the claim due to Corollary 6.11.
c) We calculate

(fw ⊗ fz)∆(Uπ
ij) =

∑
k

fw(U
π
ik)fz(U

π
kj) = δij(F

π
ii)

2w(Fπ
jj)

2z = fw+z(U
π
ij)

for all π ∈ Irr(G) and w, z ∈ C. Using again Corollary 6.11 yields the claim. □

Let us define a family (σz)z∈C of linear endomorphisms of Pol(G) by

σz(U
π
kl) =

∑
m,n

fiz(U
π
km)Uπ

mnfiz(U
π
nl) = (Fπ)2izkk U

π
kl(F

π)2izll

for all π ∈ Irr(G) and 1 ≤ k, l ≤ dim(π).

Exercise 16. Show that the maps σt form a one-parameter group (σt)t∈R of ∗-
automorphisms of Pol(G). That is, show that each σt is a ∗-automorphism and
that σr+s = σrσs for all r, s ∈ R.

Using the one-parameter group of ∗-automorphisms (σt)t∈R we can now discuss
the KMS-property of the Haar state for Pol(G).

Proposition 6.14. The Haar state ϕ satisfies ϕ(σt(g)) = ϕ(g) for all g ∈ Pol(G).
Moreover, for all g, h ∈ Pol(G) there exists a bounded continuous function f on the
strip {z ∈ C | 0 ≤ ℑ(z) ≤ 1}, analytic in the interior, such that

ϕ(σt(g)h) = ft, ϕ(hσt(g)) = ft+i

for all t ∈ R.

Proof. The first claim is an immediate consequence of the fact that ϕ(Uπ
ij) = 0

whenever π ∈ Irr(G) is not the trivial representation, which in turn follows from
Proposition 6.10.

In order to prove the second claim it suffices to consider the case that g = Uπ
kl, h =

(Uη
mn)

∗ are matrix elements of irreducible representations. Using Proposition 6.10
and Lemma 6.13 we calculate

ϕ(σt(U
π
kl)(U

η
mn)

∗) = (Fπ)2itkk (F
π)2itll ϕ(U

π
kl(U

η
mn)

∗)

= (Fπ)2itkk (F
π)2itll δπηδkmδln(F

π)2ll

and

ϕ((Uη
mn)

∗σt(U
π
kl)) = (Fπ)2itkk (F

π)2itll ϕ((U
η
mn)

∗Uπ
kl)

= (Fπ)2itkk (F
π)2itll δπηδlnδkm(Fπ)−2

kk .

Hence setting

f(z) = (Fπ)2izkk (F
π)2izll δπηδkmδln(F

π)2ll
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yields the claim. Explicitly, we have f(t) = ϕ(σt(g)h) for all t ∈ R by construction,
and we also get

f(t+ i) = (Fπ)2itkk (F
π)−2

kk (F
π)2itll (Fπ)−2

ll δπηδkmδln(F
π)2ll

= (Fπ)2itkk (F
π)2itll δπηδlnδkm(Fπ)−2

kk

= ϕ((Uη
mn)

∗σt(U
π
kl)) = ϕ(hσt(g))

as required. □

Note that the function f constructed in the proof of Proposition 6.14 is in fact
analytic on all of C.

It is a straightforward consequence of Proposition 6.10 that the restriction of
the Haar state of C(G) to Pol(G) is faithful. Using the KMS-property obtained
in Proposition 6.14, one can show that ϕ is even faithful on the image Cr(G) =

λ̂(C(G)) ⊂ B(L2(G)) of C(G) under the GNS-representation. Explicitly, due to
the invariance of ϕ under σt obtained in the first part of Proposition 6.14, the
∗-automorphisms σt induce unitary operators Ut on L

2(G) by defining

Ut(Λ(g)) = Λ(σt(g))

for g ∈ Pol(G). This determines a unitary representation of R on L2(G), and the
formula

σt(λ̂(g)) = Utλ̂(g)U
∗
t

yields a strongly continuous one-parameter group of ∗-automorphisms of Cr(G),
extending the construction on the level of Pol(G). The second part of Proposition
6.14 then implies that ϕ is a KMS-state on Cr(G). Therefore ϕ is in fact faithful
on Cr(G), see [3, Corollary 5.3.9].

Moreover, the coproduct of C(G) induces a comultiplication on Cr(G). For
this we can use the Kac-Takesaki operator W constructed at the beginning of this
section, viewed as a unitary in B(L2(G)⊗ L2(G)). Then Proposition 6.2 means

W ∗(1⊗ λ̂(f))W = (λ̂⊗ λ̂)∆(f)

for all f ∈ C(G), which means that ∆ determines a unital ∗-homomorphism
Cr(G) → Cr(G) ⊗ Cr(G). Coassociativity and the density conditions for this map
are immediate consequences of the corresponding properties for ∆, and we conclude
that Cr(G) is a unital Hopf C∗-algebra.

This means that we have now come full circle. Keeping in mind that a weight on
a unital C∗-algebra is densely defined iff it is a positive linear functional (defined
everywhere), and that lower semicontinuity is automatic in this case, we see that the
Haar state ϕ on Cr(G) is a lower semicontinuous, densely defined, faithful, left and
right invariant KMS-weight. This means that Cr(G) is indeed the Hopf ∗-algebra
underlying a compact quantum group G in the sense of Definition 3.7.

There is also a universal C∗-algebra C f(G), obtained by taking the universal C∗-
completion of Pol(G). It is not hard to check that the comultiplication of Pol(G)
induces a unital ∗-homomorphism C f(G) → C f(G)⊗C f(G) which turns C f(G) into
a Hopf C∗-algebra. The original Hopf C∗-algebra C(G) is then an intermediate
completion of Pol(G), and we get surjective morphisms

C f(G) → C(G) → Cr(G)

of Hopf C∗-algebras. Roughly speaking, we may view all three Hopf C∗-algebras
as different realisations of the same compact quantum group G.

To conclude this section let us record the Peter-Weyl Theorem, see [10, Theorem
5.12] for the classical version of this result.
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Theorem 6.15 (Peter-Weyl Theorem). Let G be a compact quantum group. Then
there is a unitary equivalence of unitary representations

L2(G) ∼=
⊕

π∈Irr(G)

H⊕ dim(Hπ)
π ,

decomposing the left regular representation of G.

Proof. It follows from Proposition 6.10 that the vectors

eπij =
√
dimq(π)F

π
iiΛ(U

π
ij)

for π ∈ Irr(G), 1 ≤ i, j ≤ dim(π) are mutually orthogonal in L2(G). Since Pol(G) ⊂
L2(G) is dense by construction, they span in fact a dense linear subspace of L2(G)
due to Proposition 6.9. Hence these vectors form an orthonormal basis of L2(G).

Using again Proposition 6.10 we obtain

(id⊗ωeπkl,e
η
mn

)(W ∗) =
√

dimq(π)
√

dimq(η)F
π
kkF

η
mm(id⊗ωΛ(Uπ

kl),Λ(Uη
mn))(W

∗)

=
√

dimq(π)
√

dimq(η)F
π
kkF

η
mm

∑
j

Uη
mj⟨Λ(U

π
kl),Λ(U

η
jn)⟩

= δπη dimq(π)F
π
kkF

π
mmU

π
mk

1

dimq(π)
(Fπ)−2

kk δln

= δπη(F
π)−1

kk F
π
mmU

π
mkδln,

or equivalently,

(id⊗ωeηmn,e
π
kl
)(W ) = δπη(F

π)−1
kk F

π
mm(Uπ

mk)
∗δln.

Comparing this with

(Uπc

)mk = (FπUπ(Fπ)−1)mk = Fπ
mm(Uπ

mk)
∗(Fπ)−1

kk ,

it follows that the regular representation leaves the linear span of the vectors eπmn

for 1 ≤ m,n ≤ dim(Hπ) invariant, and decomposes this vector space into dim(Hπ)
copies of the representation πc. This yields the claim. □

7. Actions

In group theory it is natural and important to consider actions on various types
of objects. For quantum groups the situation is no different.

Let us introduce actions of quantum groups on C∗-algebras. In fact, the following
definition makes sense, with obvious modifications, for general Hopf C∗-algebras.

Definition 7.1. A (continuous, left) action of a locally compact quantum group G on
a C∗-algebra A is an injective nondegenerate ∗-homomorphism α : A→M(Cr

0(G)⊗
A) such that the diagram

A
α //

α

��

M(Cr
0(G)⊗A)

∆⊗id

��
M(Cr

0(G)⊗A)
id⊗α// M(Cr

0(G)⊗ Cr
0(G)⊗A)

is commutative and [α(A)(Cr
0(G)⊗ 1)] = Cr

0(G)⊗A.
A G-C∗-algebra (A,α) is a C∗-algebra A with an action α of G on A. If (A,α)
and (B, β) are G-C∗-algebras, then a ∗-homomorphism f : A → M(B) is called
G-equivariant if βf = (id⊗f)α.

We write G-Alg for the category whose objects are G-C∗-algebras and morphisms
given by equivariant ∗-homomorphisms.
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Example 7.2. Let us consider two basic examples of G-C∗-algebras.

a) If A = Cr
0(G) then α = ∆ defines an action of G on A which makes A a

G-C∗-algebra.
b) For any C∗-algebra B the trivial action β : B → M(Cr

0(G) ⊗ B), β(b) = 1 ⊗ b
turns B into an G-C∗-algebra.

The actions in Example 7.2 do not rely on any special properties of the quantum
groups under consideration. For more interesting examples we need to invoke the
specific structure at hand in different situations. A well-studied class of actions
arises from homogeneous spaces for SUq(2), see [24].

Example 7.3 (Podleś sphere). Consider G = SUq(2). Then the classical torus
T = S1 is a closed quantum subgroup of SUq(2). By definition, this means that
there is a morphism of Hopf C∗-algebras C(SUq(2)) → C(T ) determined by

π

(
α −qγ∗
γ α∗

)
=

(
z 0
0 z−1

)
on generators. Moreover, the formula ρ = (id⊗π)∆ : C(G) → C(G) → C(T )
defines a (right) action of T on C(G) = C(SUq(2)). The (standard) Podleś sphere
SUq(2)/T is the space of coinvariants with respect to this action, that is,

C(SUq(2)/T ) = {f ∈ C(SUq(2))|(id⊗π)∆(f) = f ⊗ 1},

We claim that the formula α = ∆ defines an action α : C(G/T ) → C(G)⊗C(G/T ).
To see that α is a well-defined ∗-homomorphism we observe that f ∈ C(SUq(2)/T )
iff (id⊗ϕ)ρ(f) = f , where ϕ is the Haar state of C(T ). Combining this with
coassociativity of ∆ it follows that α maps C(G/T ) indeed into C(G) ⊗ C(G/T ),
and it is obvious that we have (∆⊗ id)α = (id⊗α)α. The density condition for α is
an easy consequence of the density condition [∆(C(G))(C(G)⊗ 1)] = C(G)⊗C(G)
for the quantum group, using again averaging with respect to the Haar state of C(T ).

In the classical case q = 1, the C∗-algebra C(SU1(2)) identifies canonically with
the algebra of continuous functions on the 2-sphere SU(2)/T = S2.

Let us also consider the action which is the starting point for the definition of
the quantum permutation group S+

n .

Lemma 7.4. The quantum permutation group S+
n acts on the commutative C∗-

algebra Cn via

α(pi) =
∑
j

uij ⊗ pj

where p1, . . . , pn are the canonical minimal projections in Cn.

Proof. First we need to verify that the above formula defines a unital ∗-homomorphism
Cn → C(S+

n ) ⊗ Cn. To this end note that α(pi) is a projection since each uij is a
projection, and that α(pi)α(pj) = 0 for i ̸= j. Moreover we have

α(1) =
∑
i

α(pi) =
∑
i,j

uij ⊗ pj =
∑
j

1⊗ pj = 1⊗ 1

by the defining relations of C(S+
n ).

The coaction identity (id⊗α)α = (∆ ⊗ id)α is obvious. To conclude the proof
we need to check the density condition. For f ∈ C(S+

n ) and 1 ≤ k ≤ n we have∑
i

(fuik ⊗ 1)α(pi) =
∑
i,j

fuikuij ⊗ pj =
∑
j

δjkf ⊗ pk = f ⊗ pk.

Since elements of this form linearly span C(S+
n )⊗ Cn the claim follows. □
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Exercise 17. Assume that G is a compact quantum group acting on the C∗-algebra
Cn, via β : Cn → C(G) ⊗ Cn. Show that there is a unique morphism of Hopf
C∗-algebras f : C(S+

n ) → C(G) such that (f ⊗ id)α = β.

Exercise 17 can be viewed as saying that S+
n is the universal compact quantum

group acting on n points. This is an analogue, in the world of compact quantum
groups, of the fact that any action of a (compact) group on a set with n elements
factorises (uniquely) through the symmetric group Sn.

Let us come back to the example of the adjoint action which was introduced in
Section 6.

Exercise 18. Let G be a compact quantum group and let π = (H, U) be a finite
dimensional unitary representation of G. Show that the left adjoint action of G on
K(H), given by adl(T ) = U∗(1⊗ T )U , turns K(H) into a G-C∗-algebra.

8. The noncommutative geometry of the Podleś sphere

In this section we discuss some constructions and results related to SUq(2) and
the standard Podleś sphere. Background material on compact quantum groups and
q-deformations can be found in [11].

Let us first recall the definition of the quantum group SUq(2). In Definition 4.3
we introduced the C∗-algebra C(SUq(2)) as the universal C∗-algebra generated by
elements α and γ satisfying the relations saying that the fundamental matrix

u =

(
α −qγ∗
γ α∗

)
is unitary. Explicitly, this is equivalent to the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1.

Recall also the comultiplication ∆ : C(SUq(2)) → C(SUq(2))⊗C(SUq(2)) given by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ,

or equivalently,

∆

(
α −qγ∗
γ α∗

)
=

(
α −qγ∗
γ α∗

)
⊗

(
α −qγ∗
γ α∗

)
in matrix notation.

The ∗-algebra Pol(SUq(2)) of matrix coefficients for SUq(2) is the ∗-subalgebra
of C(SUq(2)) generated by α and γ. It is a Hopf-∗-algebra with comultiplication
∆ : Pol(SUq(2)) → Pol(SUq(2))⊗Pol(SUq(2)) given by the same formula as above.
Using again matrix notation, the counit ϵ : Pol(SUq(2)) → C is defined by

ϵ

(
α −qγ∗
γ α∗

)
=

(
1 0
0 1

)
and the antipode S : Pol(SUq(2)) → Pol(SUq(2)) by

S

(
α −qγ∗
γ α∗

)
=

(
α∗ γ∗

−qγ α

)
.

We write L2(SUq(2)) for the Hilbert space obtained as the completion of C(SUq(2))
with respect to the inner product

⟨Λ(f),Λ(g)⟩ = ϕ(f∗g)

for f, g ∈ C(SUq(2)), where ϕ is the Haar state. It is equipped with the left regular
representation of SUq(2), given by the Kac-Takesaki operator.
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The representation theory of SUq(2) is very similar to its classical counterpart.
More precisely, the set Irr(SUq(2)) of equivalence classes of irreducible represen-
tations can be identified with 1

2N0, and the irreducible representation V (l) corre-

sponding to “spin” l ∈ 1
2N0 has dimension 2l + 1.

According to the Peter-Weyl theorem 6.15, the Hilbert space L2(SUq(2)) has
an orthonormal basis given by the decomposition of the left regular representation
into the isotypical components corresponding to l ∈ 1

2N0. Explicitly, we obtain an

orthonormal basis consisting of vectors e
(l)
i,j where l ∈ 1

2N and −l ≤ i, j ≤ l for all l,

by suitably normalising the matrix coefficients of V (l).
Recall also the definition of the Podleś sphere SUq(2)/T from Section 7. Inside

C(SUq(2)/T ) we have the dense ∗-subalgebra

Pol(SUq(2)/T ) = {f ∈ Pol(SUq(2))|(id⊗π)∆(f) = f ⊗ 1}

corresponding to polynomial functions. Generalising this construction, we define
for k ∈ Z the space

Γ(Ek) = {x ∈ Pol(SUq(2))|(id⊗π)∆(x) = x⊗ zk} ⊂ Pol(SUq(2)),

and we let C(Ek) and L
2(Ek) be the closures of Γ(Ek) in C(SUq(2)) and L

2(SUq(2)),
respectively. The space Γ(Ek) is a Pol(SUq(2)/T )-bimodule in a natural way. It
can be shown that Γ(Ek) is finitely generated and projective both as a left and
right Pol(SUq(2)/T )-module. This follows from the fact that Pol(SUq(2)/T ) ⊂
Pol(SUq(2)) is a faithfully flat Hopf-Galois extension, see [26]. Similarly, the vector
space C(Ek) is naturally a SUq(2)-equivariant Hilbert C(SUq(2)/T )-module. The
space L2(Ek) is naturally a representation of SUq(2). These structures are induced
from C(SUq(2)) and L

2(SUq(2)) by restriction.
In the classical case q = 1, the above constructions correspond to looking at

induced vector bundles over the homogeneous space SU(2)/T ∼= S2. More precisely,
if Ck is the irreducible representation of T of weight k ∈ Z, then

Γ(Ek) = Γ(SU(2)×T Ck)

is the space of polynomial sections of the vector bundle

SU(2)×T Ck = (SU(2)× C)/ ∼

over SU(2)/T where

(gt, λ) ∼ (g, tkλ)

for all g ∈ SU(2), λ ∈ C and t ∈ T . Similarly, C(Ek) and L
2(Ek) are the spaces of

continuous sections and L2-sections, respectively, in this case.
We now recall the definition of the equivariant spectral triple for the Podleś

sphere due to Da̧browski and Sitarz [8]. The underlying graded representation of
SUq(2) is

H = L2(E1)⊕ L2(E−1)

as defined above. The representation of A = Pol(SUq(2)/T ) is given by left mul-
tiplication. Moreover one obtains a G-equivariant self-adjoint unbounded operator
D on H by

D =

(
0 E
F 0

)
,

where E,F ∈ Uq(sl(2,C)) are the generators of the quantized universal enveloping
algebra associated with the Lie algebra sl(2,C). The spectral triple (A,H, D) has
a real structure, and a suitable version of the local index formula applies, see [8],
[22] for more information.

It follows from the Peter-Weyl Theorem 6.15 for SUq(2) that the underlying
SUq(2)-representations of L

2(E1) and L
2(E−1) are equivalent. In particular, taking
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the bounded transform of the operator D yields G-equivariant self-adjoint unitary
operator F on H such that

F =

(
0 1
1 0

)
,

by identifying the basis vectors e
(l)
i,1/2 and e

(l)
i,−1/2 of the irreducible components in

even and odd degrees.

Proposition 8.1. With the notation as above, D = (H, ϕ, F ) is a SUq(2)-equivariant

Fredholm module defining an element in KKSUq(2)(C(SUq(2)/T ),C).

Classically, we can view SU(2)/T ∼= SL(2,C)/B where B ⊂ SL(2,C) is the
Borel subgroup of upper triangular matrices. It turns out that SL(2,C) and B
admit natural deformations SLq(2,C) and Bq, respectively. For SL(2,C) this is
given by the Drinfeld double D(SUq(2)) of SUq(2), which is defined in a similar
way as the construction we considered for finite quantum groups in section 2.

Moreover, we have C(SUq(2)/T ) ∼= C(SLq(2,C)/Bq) canonically. The key point
here is that this allows one to view the Podleś sphere as a homogeneous space for
the noncompact quantum group SLq(2,C), and in particular as a G-C∗-algebra for
SLq(2,C).

Theorem 8.2. Let q ∈ (0, 1]. The Fredholm module defined above induces an ele-
ment [D] in KKD(SUq(2))(C(SUq(2)/T ),C). Moreover the standard Podleś sphere

C(SUq(2)/T ) is equivalent to C⊕ C in KKD(SUq(2)).

For a proof of Theorem 8.2 we refer to [29]. This result about the Podleś sphere
is the key ingredient in the proof of the Baum-Connes conjecture for free orthogonal
quantum groups in [29].
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